Final Review

2020年11月25日

8:01

30% first half 70% second half

History of AI Supervised Learning Framework Gradient Descent Analysis Linear Regression Ridge Lasso Compressed Sensing SVM Generalization Theory

Neural Network Optimization

- similar with kernel method but the kernel changed
- filtering matrix $Z = I_{r,i}x_i$ and $H = Z^TZ$

updating rule:

- $W(t+1) = W(t) \eta Z(f(x) y)$
- $f_{W(t+1)}(X) = f_{W(t)}(X) \eta Z^T Z(f(x) y)$

The implication and limitation (need $H(t) \approx H(0)$) of the analysis

- w_r changes but Z, H does not change too much
- when learning rate very slow and network super wide, $||w_r(0)||$ Gaussian and $||w_r(t) w_r(0)||$ relatively small by linear convergence

PCA/SVD

- How to do dimension reduction (JL Lemma? does not utilize the feature of data)
- PCA different interpretation: maximal variance, minimal reconstruction error
- related to SVD: $X = U\Sigma V^T$, $XX^T = U^T\Sigma^2 U$
- Power method find the most significant eigenvector, remove it and iterate
- Decoupling: reduce the degree to which each program module relies on each of the other modules
- Microservices, data processing as pipeline, asynchronous communication
- not coupled with physical servers, concurrency(inside a micro), database

LSH

c-approximate R-near neighbour

definition: a family $H(R, cR, P_1, P_2)$ -sensitive

-
$$\Pr_{h \in H}[h(p) = h(q)] \ge P_1$$
, $\forall ||p - q|| \le R$

-
$$\Pr_{h \in \mathcal{H}}[h(p) = h(q)] \le P_2$$
, $\forall ||p - q|| \ge cR$

LSH library of ℓ_2 : $h_{r,b} = \left| \frac{\langle r, x \rangle + b}{w} \right|$ (intuition: project all points to a line and split it into buckets)

- L functions from
$$H$$
, each from R^d to R^k . $\rho=\frac{\log\frac{1}{p_1}}{\log\frac{1}{p_2}}$, $L=n^\rho$, $k=\log\frac{1}{p_2}n$

Metric Learning

- searching in orginial R^d space may not be the best choice, find $f: R^d \to R^k$

- NCA:
$$p_{i,j} = \frac{e^{-\left|\left|\beta(t)f(x)\right|^2}}{\sum_{k \neq i} e^{-\left|\left|\beta(t)\beta(t)\right|^2}}$$
 optimize $f(A) = \sum_i P_i$, where $P_i = \sum_{j \in C_i} p_{i,j}$

- LMNN: Triplet loss $\max(||f(x) f(x^+)|| ||f(x) f(x^-)|| + r)$ Pull positive points together and push the negative points far away
- Spreading vectors: use regularizer to push points away

Decision Tree

- good explanation but hard switch paths and easy to overfit

Boolean function analysis

- Fourier basis: $\chi_S(x) = \prod_{i \in S} x_i$ for $S \subset [n]$
- dot product defined on uniform distribution D on $\{-1,1\}^n$
- $f_{\alpha}(x)$: all Fourier basis starting with α summed together (a natural function in Decision trees)

Approximate any s leaf node decision tree by $\frac{s^2}{\epsilon}$ sparse $\log(\frac{s}{\epsilon})$ degree boolean function

- proof: cut \rightarrow L1(f)<s \rightarrow L0(f) < $\frac{s^2}{\epsilon}$

KM algorithm

- If $E[f_{\alpha}^2] \geq \theta^2$, which means the branch is still promising, further explore $\alpha 0, \alpha 1$ LMN algorithm

- take m samples and use them to estimate \hat{f}_S : $\frac{1}{m}\sum_{i=1}^m f(x_i)\chi_S(x_i)$
- Compressed Sensing: $\hat{f}_S(x)$ sparse input x, χ_S basis as matrix A.

Gini Index

- Pick splitting variable!
- Gini = 1- $\sum_{i=1}^{n} p_i^2$, i means in the i-th class
- 0 means all in one class and 1 means random
- The Gini index for a random variable is the weighted summation

Random Forest

- Bagging: samples n times with replacement, use the data to train a tree T_b , repeat B times
- Feature Bagging: Each tree takes random subset of features, force to use all features
- Boosting: combine weak learners to form a strong one
- Repeat T times with updating data samples!

Adaboost

- Intuition: sample more data on hard cases (with wrong answer by weak learner h_t)
- Training error $\leq \prod_t 2\sqrt{\epsilon_t(1-\epsilon_t)}$
- proof: compute final distribution \rightarrow training error = $\prod_t Z_t \rightarrow$ compute Z_t
- Generalization: Small train loss margin implies small test loss + adaboost train loss margin →0
- Extension to regression: use coordinate descent since dim is too large
- Gradient boosting: fit a weak model for data x_i , $y_i F(x_i)$
- $F(x_i) = F(x_i) + h(x_i)$ equals to(a weak estimation of) $F(x_i) = F(x_i) \frac{\partial L}{\partial F(x_i)}$

Robust ML

Adversarial attack

- Projected gradient descent: $\max_{\delta \in \Delta} L(x + \delta, y; \theta)$
- $\delta = P_{\Delta}(\delta + \nabla_{\delta}L(x + \delta, y; \theta))$

- FGSM: use ℓ_∞ ball as Δ , essentially clipping the gradient
- Danskin's Theorem: we can optimize through the max just by finding its maximizing value Robust features:
 - get a robust model and its feature extract function generate x_r from random initialization such that $g(x_r) \approx g(x)$
 - intuitively, robust features are similar but non-robust features are independent, so training on robust features gives robust performance

Randomized Smoothing (proof for ℓ_2 , Gaussian)

- get smoothed classifier g by base classifier f, greedy fill based on $\frac{\Pr_{x \text{ ball}}(x)}{\Pr_{x+\delta \text{ ball}}(x)}$

Hyperparameter Tuning

Bayesian Optimization

- prior, sample (balance exploitation and exploration), update prior
- hard to parallelize

Gradient Descent

- continuous
- Compute $\nabla_{\eta} f(w_0, \eta)$ (How to store long chain of backpropagation?)
- naive idea: store parameters (memory inefficient)
- revert back idea: store all gradient (memory inefficient)
- improvement: use momentum to store info for all gradients (cons: finite precision)
- the momentum v_t stores the compressed info of gradient $w_1, ..., w_T$
- improvement: use finite precision but store the risidual

Random Search

- much better than grid search!

Best arm identification

- successive Halving algorithm
- remove half of the arms with worst empirical performance
- proof: bound the probability that #arms with better empirical value than the best $\geq \frac{1}{3} \times \frac{3}{4}$
- Hyperband: automatically tune n for B/n

Neural Architectrue Search

- ProxylessNAS directly learn on original task, instead of on several different predefined tasks
- each layer consider all possibilities, output relies on one sampled path
- (how to automatically tune depth and the major challenge solved?)

Matrix Completion

Assumption:

- Matrix A low rank
- known entries uniformly distributed
- Incoherence: A is not too sparse

Solution

- $P_{\Omega}(A)$:unknow entries filled with 0
- want to find $A = UV^T$ with low rank U,V
- minimize: $\min_{U,V \in R^{n \times r}} \left| \left| P_{\Omega}(V^T) \cdot P_{\Omega}(A) \right| \right|$
- Not convex, but we can alternatively minimize U,V, each subproblem is convex

Non-convex optimization

Assumption:

- local min are equally good (robust to randomness)

Main theorem

- smooth, bounded, strict saddle, Hessian smooth
- SGD has variance in every direction, SGD will escape all saddle points and converge to local min (poly)
- proof not required

Clustering

K means

Spectral Graph clustering (Graph Laplacian)

- because ℓ_p metric is not necessarily the best, we define similarities in a more general way
- relaxation of ratio cut problem (NP)

Graph Laplacian

- #zero eigenvalues = #Connected components

Ratio Cut Problem

- The Spectral graph clustering is an approximation of Ratio cut

t-SNE

- scale down dimension,
- $x \rightarrow y$, keep similarity distribution
- tune σ_i by matching with perplexity
- Intuition of SNE: smooth measurement of effective number of neighbors
- t-SNE: use student t distribution (heavy tail distribution to distribute closer points farther)(crowded problem)

Differential Privacy

 (ϵ, δ) -differential private randomized algorithm M

- for all $S \subseteq Range(M)$, $x, y \in N^{|X|}$, such that $||x y||_1 \le 1$:
- $\Pr[M(x) \in S] \le e^{\epsilon} \Pr[M(y) \in S] + \delta$

Immunity to postprocessing

- M(x) also (ϵ, δ) -DP

Composition of DP:

- $(\sum \epsilon_i, \sum \delta_i)$ -DP

Randomness is essential

- If determinisitic, for two database with different outputs(nontrivial), consider the path

DP promise: changing one choice does not change utility of anyone much

Laplace Machanism

ullet Given any function $f:N^{|X|} o \mathbb{R}^k$, the Laplace mechanism is described as:

$$M_k(x,f,\epsilon)=f(x)+(Y_1,\ldots,Y_k)$$

- where Y_i is drawn randomly from $Lap(\frac{\Delta f}{\epsilon})$
- $\bullet \ \Delta f = {\rm max}_{x,y \in N^{|X|}, ||x-y||_1 = 1} \ ||f(x) f(y)||_1$
- $Lap(b) = \frac{1}{2b}e^{-\frac{|x|}{b}}$

Learning Augmented Algorithm

- Design algorithms to learn data pattern, for better performance (also reasonably good for special cases)
- Completely replace / replace one gadget / Give oracle advice
- search in min-max range, many queries are wasted if doing binary search

Neural architectures

- Stochastic depth
- Resnet vs Densenet