Hyperparameter Tuning

Problem:

- Minimize a black box function $f(x_1,\ldots,x_d)$
- Query mode, no explicit form
- The x_i are hyperparameters, could be discrete or continuous

Different techniques

- Bayesian Optimization
- Gradient descent
- Random Search
- Multi-armed Bandit based algorithms
- Grid Search

Bayesian Optimization

• A sequential algorithm (hard to parallelize, which is very important in hyperparameter tuning)

Procedures:

- 1. Assume a prior distribution for the loss function
- 2. Select new samples that balance exploration and exploitation
- 3. Update the prior with the new samples using Bayes' rule
- Tools: Spearmint
- limitation: does not work well for high dimensional hyperparameters space

Gradient Descent

A simple example for illustration:

- Linear regression: $L(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x y)^2$
- Do gradient descent for only two steps:
 - $\circ \ \ w_2 = w_1 \eta \nabla_w L(w_1)$
 - $\circ \hspace{0.2cm} w_1 = w_0 \eta_w L(w_0)$
 - $\circ \ f(w_0,\eta)=L(w_2)$, we need to compute $abla_\eta f(w_0,\eta)$
- Define momentum $v_t = \gamma v_{t-1} (1-\gamma)
 abla_w L(w, heta,t)$
- v_t store compressed information of w_1, \ldots, w_T .

Multi-Armed Bandit

• π arms, each gives a reward (bounded random variable with expectation v_i)

Successive Halving algorithm

Algorithm 1 Successive Halving
Input: budget B
1: $S_0 \leftarrow [n]$
2: Per round budget $B' \leftarrow \frac{B}{\log_2(n)}$
3: for $r = 0$ to $\log_2(n) - 1$ do
4: Sample each arm $i \in S_r$ for $\frac{B'}{ S_r }$ times
5: Let S_{r+1} be the set of $ S_r /2$ arms in S_r with the largest
empirical average
6: end for

Output: $S_{\log_2(n)}$

Theoretical Guarantee

- Assume $v_1 > v_2 \geq \ldots \geq v_n$ and $\Delta_i = v_1 v_i$
- The algorithm finds the optimal solution with probability of $1-\delta$ within $B = O(H_2 \log n \log(rac{\log n}{\delta}))$, where $H_2 = \max_{i \geq 1} rac{i}{\Delta_i^2}$

Proof:

• Concentration Inequality: $rac{B}{|S_r|\log n}$ sampling times for each $i\in S_r$ for round r. Then

$$\Pr(\hat{v_1} \le \hat{v_i}) \le e^{-rac{1}{2}rac{B\Delta_i^2}{|S_i|\log n|}}$$
 (1)

- Let $n_r = rac{n}{2^{r+2}}$, so in round r we have $4n_r$ left. Denote the smaller $3n_r$ arms by $S'_r.$
- Let N_r be the number of arms with empirical mean larger than arm 1, and also in S'_r .

$$\mathbb{E}[N_r] = \sum_{i \in S'_r} e^{-rac{1}{2} rac{B\Delta_i^2}{|S_r| \log n}} \le |S'_r| e^{-rac{B}{8 \log n} rac{\Delta_{n_r}^2}{n_r}}$$
 (2)

 Then by Markov inequality, with high probability there are not so many bad arms with empirical mean larger than arm 1

$$\Pr[N_r > rac{1}{3} |S_r'|] \le 3e^{-rac{B}{8\log n} rac{\Delta_{n_r}^2}{n_r}}$$
 (3)

- This means we will have $\frac{1}{3} \times 3n_r = n_r$ good arms in S'_r and also n_r good arms in $S_r S'_r$.
- Then the probability that the arm 1 got removed in any round is at most

$$3e^{-\frac{B}{8\log n}\frac{\Delta_{n_r}^2}{n_r}} \cdot \log n = 3\log n e^{-\frac{B}{8H_2\log n}} \tag{4}$$

•

Applications to Hyperparameters tuning

- Each configuration is an arm
- · However, we are not drawing random variables, but we only care about the last observed value
- For all $i \in [n]$, $k \geq 1$, let $\ell_{i,k}$ be a sequence for arm i, assuming $v_i = \lim_{\tau \to \infty} \ell_{i,\tau}$.

Algorithm 2 Successive Halving

Require: budget *B* 1: $S_0 \leftarrow [n]$ 2: Per round budget $B' \leftarrow \frac{B}{\log_2(n)}$ 3: **for** r = 0 to $\log_2(n) - 1$ **do** 4: Pull each arm $i \in S_r$ for $\frac{B'}{|S_r|}$ times, get the current value ℓ_{i,k_i} . 5: Let S_{r+1} be the set of $|S_r|/2$ arms in S_r with the smallest ℓ_{i,k_i} 6: **end for Ensure:** $S_{\log_2(n)}$

Theoretical Guarantee

- Let $\gamma_i(t)$ be non-increasing function of t, which gives the smallest value for each t s.t. $|\ell_{i,t} v_i| \leq \gamma_i(t)$.
 - "envelope" of the curve
- Let $\gamma_i^{-1}(lpha) = \min\{t \in N: \gamma(t) \leq lpha\}$
 - First time we are α -close to v_i
 - If $k_i \geq \gamma_i^{-1}(rac{v_1-v_i}{2}), k_1 \geq \gamma_1^{-1}(rac{v_1-v_i}{2})$, then arm 1 and arm i are separated.