Hyperparameter Tuning

Problem:

e Minimize a black box function f(zy,...,z4)
e Query mode, no explicit form
e The z; are hyperparameters, could be discrete or continuous

Different techniques

e Bayesian Optimization

e Gradient descent

e Random Search

e Multi-armed Bandit based algorithms
e Grid Search

Bayesian Optimization

e A sequential algorithm (hard to parallelize, which is very important in hyperparameter
tuning)

Procedures:

1. Assume a prior distribution for the loss function
2. Select new samples that balance exploration and exploitation
3. Update the prior with the new samples using Bayes' rule

e Tools: Spearmint
e |imitation: does not work well for high dimensional hyperparameters space

Gradient Descent

A simple example for illustration:

e Linear regression: L(w) = 3 Y7, (w' = — y)?

e Do gradient descent for only two steps:

O Wy = wW; — ’I’]va(wl)

o wy = wy — NwL(wp)

o f(wo,n) = L(wz), we need to compute V,, f(wo,n)
¢ Define momentum v, = yv;_1 — (1 — )V L(w, 6, t)

e 1, store compressed information of wy,...,wr.
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Multi-Armed Bandit

e 7 arms, each gives a reward (bounded random variable with expectation v;)

Successive Halving algorithm

Algorithm 1 Successive Halving

Input: budget B
. S [n]
2: Per round budget B’ < Iogz%
3: for r =0 to log,(n) — 1 do

4:  Sample each arm i € S, for % times

5 Let S,.1 be the set of |S,|/2 arms in S, with the largest

empirical average

6: end for
Output: S ()

=

Theoretical Guarantee

e Assumewv; > vy > ... > v, and A; = v — v;
¢ The algorithm finds the optimal solution with probability of 1 — ¢ within

B = O(H; lognlog(b%)), where Hy = max;>; ﬁ

Q

Proof:

e Concentration Inequality: ‘S‘%gn sampling times for each ¢ € S, for round r. Then
1 B
PI‘('UAl < ’UAl) < e 2 Sillgn (1)
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2r+2 '

o letn, = so in round r we have 4n, left. Denote the smaller 3n, arms by Sj..

e Let N, be the number of arms with empirical mean larger than arm 1, and also in S;..

2
BA; B A%r

1
EIN,] = e *Blosn < |Shle Toen o (2)
ies,
e Then by Markov inequality, with high probability there are not so many bad arms with
empirical mean larger than arm 1
]_ B A%r
Pr[N, > §‘S’l’H < 3e slgn (3)
e This means we will have % X 3n, = n, good arms in S and also n, good armsin S, — S..

e Then the probability that the arm 1 got removed in any round is at most

B A __ B
3e slgn m .logn = 3logne SHzloen (4)

Applications to Hyperparameters tuning

e FEach configuration is an arm

e However, we are not drawing random variables, but we only care about the last observed
value

e Foralli € [n], k> 1, let 4, be asequence for arm 4, assuming v; = lim, , 4; ;.
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Algorithm 2 Successive Halving
Require: budget B
: 50 — [n]
. Per round budget B’ < - B
g2(n)
: for r =0 to log,(n) — 1 do
Pull each arm i € S, for % times, get the current value /; ..
Let S,;1 be the set of |S/|/2 arms in S, with the smallest /;
6: end for
Ensure: S5 ()

a B~ W N =

Theoretical Guarantee

e Let v, (t) be non-increasing function of ¢, which gives the smallest value for each ¢ s.t.
i —vi| < %i(t).
o "envelope" of the curve
o lety; '(a) =min{t € N:9(t) < a}
o First time we are a-close to v;

o Ifk; > 7{1(%), ky > 'yl_l(vl;” ), then arm 1 and arm 4 are separated.
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