Differential Privacy

Idea

• Use randomization to protect privacy, but at the same time recover the distribution from population

Randomness is Essential!

- Assume we have a non-trivial deterministic algorithm
- There exists a query and two databases A and B and yield different outputs
- Change one row of *A* to *B* each time, there must be a time when the output is changed by changing only one row. (A row corresponds to a person's profile)
- The value of that row can then be learnt from an adversary

Notations

- Database x: collections of records from X
- Represent databases by their histograms: $x \in N^{|X|}$
- where x_i denotes the number of elements in DB of type $i \in X$
- $\left|\ell_1: \left|\left|x-y\right|\right|_1 = \sum_{i=1}^{|X|} \left|x_i-y_i\right|$
- so $||x||_1$ is the total size of the database and $||x y||_1$ is the number of different records

Definition

- A randomized algorithm M with domain $N^{|X|}$ is (ϵ, δ) -differentially private
- if for all $S \subseteq Range(M)$ and for all $x, y \in N^{|X|}$ such that $||x y||_1 \le 1$:

 $\Pr[M(x) \in S] \le e^{\epsilon} \Pr[M(y) \in S] + \delta$ (1)

• in other words, probability of generating any outcome is similar by changing 1 element

Properties

Immunity to post-processing

- $f \circ M$ is differentially private for any f
- It suffices to prove for deterministic f. Then the proof is trivial based on the definition

Promises

- Suppose the set of event A and a utility function $u_i:A
 ightarrow\mathbb{R}^*$
- Assume f: Range(M)
 ightarrow A determines the distribution of the future event
- We have

$$\mathbb{E}_{a \sim M(x)}[u_i(f(a))] \le E_{a \sim M(y)}[u_i(f(a))]$$
(2)

- for any $||x y||_1 \leq 1$.
- so one person influence little

Mechanism

Random coin toss

Laplace Mechanism

• Given any function $f:N^{|X|}
ightarrow \mathbb{R}^k$, the Laplace mechanism is described as:

$$M_k(x, f, \epsilon) = f(x) + (Y_1, \dots, Y_k)$$
(3)

- where Y_i is drawn randomly from $Lap(\frac{\Delta f}{\epsilon})$
- $\bullet \ \ \Delta f = \max_{x,y \in N^{|X|}, ||x-y||_1 = 1} ||f(x) f(y)||_1$
- $Lap(b) = \frac{1}{2b}e^{-\frac{|x|}{b}}$

Theorem (Privacy)

• Laplace Mechanism preserves $(\epsilon, 0)$ -differential privacy

Accuracy Guarantee