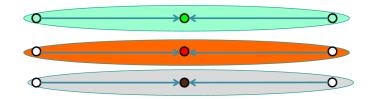
Clustering

K-means

• partition $(x_1, x_2, \dots, x_n), x_i \in \mathbb{R}^d$ into (S_1, S_2, \dots, S_k) k classes

$$rgmin_S \sum_{i=0}^k \sum_{k\in S_i} ||x-\mu_i||^2$$
 (1)

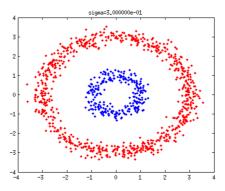
- In general , NP-hard
- Heuristic: Lloyd's algorithm
 - Randomized initialization
 - Recursively, assign points to the closest center and recompute the center
 - A local optima is shown as follows:



• Terminates since decreasing average distance each iteration

Spectral Graph Clustering

- ℓ_p not the best in some scenarios
- In general, we shall define similarities between points



- Intra-group edges have large weights
- Inter-group edges have small weights

Different types of graphs

- ϵ -neighborhood $w_{ij} = 1$ iff ϵ -close
- KNN graph
- fully connected with w_{ij} self defined

Graph Laplacian

- D is the diagonal matrix $D = \text{diag}(d_1, d_2, \dots, d_n)$.
- *A* is the adjacent matrix
- Graph Laplacian: L = D A.

Theorem Let G be an undirected graph with nonnegative weights.

- # zero eigenvalues of L = # connected components in G
- *L* is symmetric and also positive semidefinite
- Free to assume: $0=\lambda_1\leq\lambda_2\leq\ldots\leq\lambda_n$
- •