Zero-Knowledge Proof

Recap:

- Interactive proof: Prover, Verifier, L, x
 - Completeness: $x \in L$ gives $\langle P, V
 angle(x)
 ightarrow \pi$ such that $V(x,\pi) = 1$
 - Soundness: $x \in L$, \forall prover P, $\langle P, V \rangle(x) \rightarrow \pi$, and $\Pr[V(x, \pi) = 1] \leq \frac{1}{2}$
- What if a verifier is malicious and wants to learn more information?

Informal Definition (Zero-Knowledge)

- View(P, V): Messages between P and V
- There exists a simulator S, such that

$$View(P,V) \approx_C S(x, \text{The statement is true})$$
 (1)

(Honest-Verifier: verifier really follows the protocol)

Proof System for Graph Isomorphism

- A prover P wants to prove $G_1\cong G_2$ to a verifier V
- The prover *P* knows a permutation π that $\pi(G_1) = G_2$.
- *P* pick a permutation $\sigma \leftarrow S_{|V|}$ and send $G' = \sigma(G_1)$ to *V*
- The verifier V pick a random b from $\{1, 2\}$, and ask the prover to give a permutation from $\sigma(G_1)$ to G_b
- *P* outputs $\tau = \sigma$ if b = 1, $\tau = \sigma \pi^{-1}$ if b = 2.
- Completeness, Soundness holds for this scheme
- Zero-Knowledge:
 - Construct a simulator $S: b' \leftarrow \{1, 2\}$
 - $\sigma' \leftarrow S_{|V|}$, outputs $\sigma'(G'_b)$, b' and then σ'
 - $\circ \ (G',b,\tau) \approx_C (\sigma'(G'_b),b',\sigma')$

Malicious Verifier Zero Knowledge Proof

• For all verifiers V^* , there exists a simulator S, such that

 $View(P,V)pprox_C S(x,V^*, ext{The statement is true})$

(2)

• which means we give the verifier to simulator as an oracle.

Construct another simulator for GI proof system for malicious verifiers:

• $b' \leftarrow \{1, 2\}$

•
$$\sigma' \leftarrow S_{|V|}$$

•
$$\tilde{G} = \sigma'(G_{b'})$$

• Query the verifier $ilde{b} = V^*(ilde{G})$

- If $b' = \tilde{b}$, outputs σ . Otherwise resample b' and do this again.
- Since $\sigma'(G_1)$ is identically distributed with $\sigma'(G_2)$, we succeed with 1/2 probability each time. Hence we can simulate this in polynomial trail.