Algorithms related to Factoring and Discrete-log

Definition (Collection of one-way functions)

- a collection of one-way functions is a family $F = \{f_j : D_j \to R_j\}_{j \in J}$ if:
 - 1. It is easy to sample $j\in J$ to get a f_j
 - 2. It is easy to sample uniformly from D_j
 - 3. Easy to evaluate
 - 4. Hard to invert

$$\Pr[j \leftarrow Gen(1^n), x \leftarrow D_j, y = f_j(x), x' = A(1^n, j, y) : f_j(x') = y] \le \epsilon(n)$$

$$\tag{1}$$

RSA Problem

- Let $\Pi_n = \{q| 2 < q < 2^n, q ext{ prime}\}$, $p, q \leftarrow \Pi_n, N = pq$.
- Let $e \leftarrow \mathbb{Z}^*_{\Phi(N)}$ ($\Phi(N) = (p-1)(q-1)$), and where \mathbb{Z}^* is the multiplicative group.
- Let $y \leftarrow \mathbb{Z}_N^*$.
- RSA problem: Given N, e, y, find x from \mathbb{Z}_N^* such that

$$x^e = y \bmod N \tag{2}$$

- RSA assumption: $f_{N,e}(x) = x^e \mod N$ is a collection of one-way function.
- If we know the inverse element d of e: $de = 1 \mod \Phi(N)$, then $x = y^d \mod N$. And d can be derived from $\Phi(N)$
- **Observation**: Breaking factoring problem helps finding $\Phi(N)$ and thus d, which breaks RSA problem.

Public-key encryption scheme

- Public key N, e
- Private key N, d
- Encrypt: $Enc(pk,m) = m^e \mod N$

Generalization of RSA

• Let N be a composite integer of unknown factorization, let

$$p(x) = x^{\delta} + a_{\delta-1}x^{\delta-1} + \dots + a_0$$
 (3)

be a monic integer polynomial of degree δ .

• Given p(), N, find a root of $p(x) \mod N$.

Another variant of RSA

• Instead of finding *x*, find *e* in:

$$x^e = y \bmod N$$

(4)

The Rabin Problem

- Change $e \in \mathbb{Z}^*_{\Phi(N)}$ in RSA problem to e = 2.
- Let $y \leftarrow QR_N$
- Given N, y, find x from \mathbb{Z}_N^* such that

 $x^2 = y \bmod N \tag{5}$

• **Theorem:** Breaking Rabin problem = Breaking Factoring

Discrete-log Problem

- Let q be a ${\bf prime\ modulus}$ such that q-1 has a large prime factor p, then let G be a subgroup of \mathbb{Z}_q^* of order p
- For example, let q = 2p + 1 where p, q are primes
- For a random $x\in\mathbb{Z}_p$, Let (g is a generator of G)

 $y = g^x \mod q \tag{6}$

- •
- The discrete-log problem: Given G, g, y find x.

Diffie-Hellman key agreement from discrete-log

• See One note