Basic algorithms in number theory and cryptography

- Denote by $\Phi(N)$ as the Euler's totient function (# primes less than N)
- Denote by $\mathbb{Z}_n = \{0, 1 \dots, N-1\}$ and Z_N^* as the multiplicative group of \mathbb{Z}_N
- Denote by QR_N as the set of quadratic residues in \mathbb{Z}_N^*

$$QR_N = \{a|a = x^2 \mod M \text{ dor some } x \in \mathbb{Z}_N^*\}$$
(1)

Facts:

- 1. $QR_N \leq Z_N^*$
- 2. orall p > 2 prime, $x o x^2 mod p$ is a 2 to 1 function over \mathbb{Z}_p^*
- 3. $|QR_p| = |Z_p^*|/2 = (p-1)/2$, for all prime p>2.
- 4. For primes p,q>2, let N=pq. Then $x o x^2$ is a 4 to 1 function over $\mathbb{Z}_p^*.$
- 5. (Fermat's little theorem) p prime, then for all $a \in \mathbb{Z}_p^*$,

$$a^{p-1} = 1 \bmod p \tag{2}$$

Test whether a number N is prime

- **Guess**: if N is not a prime, then "for many" $a \in \mathbb{Z}_N^*$, $a^{N-1}
 eq 1 mod N$
 - Not true! --> Carmichael numbers

Miller-Rabin prime test

- Let $N-1=t\cdot 2^h$ and t is odd
- Define $L'_N = \{a \in \mathbb{Z}_N^* | \}$

A-K-S primality test (2002) deterministic

Algorithms of Factoring

Fermat's algorithm

• Try to find non trivial (a,b) such that

$$a^{2} = b^{2} \mod N \Rightarrow (a+b)(a-b) = 0 \mod N$$
(3)

Lan's algorithm

• $O(\exp(k^{1/2}(\log k)^{1/2})$ where k is the bit length of the smallest prime factors of N

Number field sieve

- $O(\exp(n^{1/3}(\log n)^{2/3}))$ where *n* is the hyperparameter of the size of primes chosen
- Fastest classical algorithm

Smooth Numbers

- A number is B smooth if all its primes factors $\leq B$
- Denote the set of all integers up to x that are y smooth as S(x,y) and $\Psi(x,y)=|S(x,y)|.$
- Rankin 1938:

$$\Psi(N, \log(N)^A) = N^{1 - 1/A + O(1/\log\log N)}$$
(4)

• Canfield, Erdos, Pomerance 1983:

$$\Psi(N,y) = N/u^{u+o(u)} \quad \text{for} u \le y^{1-\epsilon}$$
(5)