Basic algorithms in number theory and cryptography

- Denote by $\Phi(N)$ as the Euler's totient function (\# primes less than N)
- Denote by $\mathbb{Z}_{n}=\{0,1 \ldots, N-1\}$ and Z_{N}^{*} as the multiplicative group of \mathbb{Z}_{N}
- Denote by $Q R_{N}$ as the set of quadratic residues in \mathbb{Z}_{N}^{*}

$$
\begin{equation*}
Q R_{N}=\left\{a \mid a=x^{2} \bmod M \text { dor some } x \in \mathbb{Z}_{N}^{*}\right\} \tag{1}
\end{equation*}
$$

Facts:

1. $Q R_{N} \leq Z_{N}^{*}$
2. $\forall p>2$ prime, $x \rightarrow x^{2} \bmod p$ is a 2 to 1 function over \mathbb{Z}_{p}^{*}
3. $\left|Q R_{p}\right|=\left|Z_{p}^{*}\right| / 2=(p-1) / 2$, for all prime $p>2$.
4. For primes $p, q>2$, let $N=p q$. Then $x \rightarrow x^{2}$ is a 4 to 1 function over \mathbb{Z}_{p}^{*}.
5. (Fermat's little theorem) p prime, then for all $a \in \mathbb{Z}_{p}^{*}$,

$$
\begin{equation*}
a^{p-1}=1 \bmod p \tag{2}
\end{equation*}
$$

Test whether a number N is prime

- Guess: if N is not a prime, then "for many" $a \in \mathbb{Z}_{N}^{*} a^{N-1} \neq 1 \bmod N$ - Not true! --> Carmichael numbers

Miller-Rabin prime test

- Let $N-1=t \cdot 2^{h}$ and t is odd
- Define $L_{N}^{\prime}=\left\{a \in \mathbb{Z}_{N}^{*} \mid\right\}$

A-K-S primality test (2002) deterministic

Algorithms of Factoring

Fermat's algorithm

- Try to find non trivial (a, b) such that

$$
\begin{equation*}
a^{2}=b^{2} \bmod N \Rightarrow(a+b)(a-b)=0 \bmod N \tag{3}
\end{equation*}
$$

Lan's algorithm

- $O\left(\exp \left(k^{1 / 2}(\log k)^{1 / 2}\right)\right.$ where k is the bit length of the smallest prime factors of N

Number field sieve

- $O\left(\exp \left(n^{1 / 3}(\log n)^{2 / 3}\right)\right)$ where n is the hyperparameter of the size of primes chosen
- Fastest classical algorithm

Smooth Numbers

- A number is B smooth if all its primes factors $\leq B$
- Denote the set of all integers up to x that are y smooth as $S(x, y)$ and $\Psi(x, y)=|S(x, y)|$.
- Rankin 1938:

$$
\begin{equation*}
\Psi\left(N, \log (N)^{A}\right)=N^{1-1 / A+O(1 / \log \log N)} \tag{4}
\end{equation*}
$$

- Canfield, Erdos, Pomerance 1983:

$$
\begin{equation*}
\Psi(N, y)=N / u^{u+o(u)} \quad \text { for } u \leq y^{1-\epsilon} \tag{5}
\end{equation*}
$$

