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Abstract

Federated learning (FL) provides an effective paradigm to train machine learning
models over distributed data with privacy protection. However, recent studies
show that FL is subject to various security, privacy, and fairness threats due to the
potentially malicious and heterogeneous local agents. For instance, it is vulnerable
to local adversarial agents who only contribute low-quality data, with the goal of
harming the performance of those with high-quality data. This kind of attack hence
breaks existing definitions of fairness in FL that mainly focus on a certain notion
of performance parity. In this work, we aim to address this limitation and propose
a formal definition of fairness via agent-awareness for FL (FAA), which takes
the heterogeneous data contributions of local agents into account. In addition, we
propose a fair FL training algorithm based on agent clustering (FOCUS) to achieve
FAA. Theoretically, we prove the convergence and optimality of FOCUS under
mild conditions for linear models and general convex loss functions with bounded
smoothness. We also prove that FOCUS always achieves higher fairness measured
by FAA compared with standard FedAvg protocol under both linear models and
general convex loss functions. Empirically, we evaluate FOCUS on four datasets,
including synthetic data, images, and texts under different settings, and we show
that FOCUS achieves significantly higher fairness based on FAA while maintaining
similar or even higher prediction accuracy compared with FedAvg.

1 Introduction

Federated learning (FL) is emerging as a promising approach to enable scalable intelligence over
next-generation mobile networks [11, 19]. It transforms the machine learning ecosystem from “cen-
tralized over-the-cloud" to “decentralized over-the-edge" in order to (a) alleviate the communication
bottleneck for pooling massive amounts of data from millions of local users, (b) protect users’ privacy
by avoiding data egress from their devices, (c) provide personalized intelligent services effectively,
and (d) enable large-scale model training.

Despite significant recent milestones in FL, recent studies show that FL is vulnerable to different
training-time attacks due to the untrusted local agents [4, 5, 28] and privacy attacks even if there is
only one adversarial local agent [15, 24]. Given such untrustworthiness and heterogeneity nature of
local agents in FL, especially in the non-IID setting, it is natural to ask: Can we ensure the fairness of
the final learned model for agents? Indeed, considering the wide application of FL, including medical
analysis [31, 1], recommendation systems [25, 3], and personal Internet of Things (IoT) devices [2],
it is vitally important to ensure the fairness of FL before its large-scale deployment.

There has been a line of research exploring fairness in federated learning. However, current studies
either focus on the fairness of the final trained model regarding the protected attributes without
∗These authors contributed equally to this work.
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considering different “contributions" of agents [6, 14] or focus on accuracy parity across agents [20, 9,
26]. Several works have taken the contribution of agents into account, while the metric of contribution
measurement varies, including the predefined contributions of agents [35], local data quality [35, 16],
and local data sizes [10]. In this work, we take into account the heterogeneity of local agents’ data
and aim to define and enhance the fairness via agent-awareness for FL (FAA). In particular, for
FL trained with standard FedAvg [23], if we denote the data of agent e as De with ne the size of
De and the total number of data as n, the final trained model aims to minimize the loss with respect
to the uniform distribution P =

∑E
e=1

ne
n De, where E is the total number of agents. Obviously, in

practice, some local agents may have low-quality data (e.g., free riders), so intuitively it is “unfair"
to train the final model regarding such uniform distribution over all agents, which will sacrifice the
performance of agents with high-quality data. Thus, in this work, we propose to define the fairness of
the local agents in FL via agent-awareness based on the excess risk of each agent e, which stands for
the loss of the final model parameterized by θ subtracted by the Bayes error [27] of the local data
distribution: Ee(θ) = Le(θ)−minw Le(w). The overall fairness of FL (FAA) is then expressed as:
F(θ) = maxe1,e2∈E

∣∣∣Ee1(θe1)− Ee2(θe2)
∣∣∣, where E denotes the set of local agents.

Based on our definition of fairness in FL via agent awareness (FAA), we propose the fair FL algorithm
based on agent clustering (FOCUS) to improve the fairness of the trained models. Specifically, we
first cluster the local agents based on their data distributions and then train a model for each cluster.
During inference time, the final prediction will be the weighted aggregation over the prediction
result of each cluster-based model. Theoretically, we prove that the final converged stationary point
of FOCUS is exponentially close to the optimal clustering assignment under mild conditions. In
addition, we prove that the fairness FAA of FOCUS is strictly higher than that of FedAvg under both
linear models and general convex losses. Empirically, we evaluate FOCUS on four datasets, and
we show that FOCUS achieves higher fairness measured by FAA than FedAvg, while maintaining
similar or even higher prediction accuracy.

Technical contributions. In this work, we focus on defining and improving the fairness of FL by
taking the heterogeneous data contributions of local agents into account. We make contributions on
both theoretical and empirical fronts.

• We formally define the fairness via agent-awareness for FL (FAA) based on the agent-level excess
risks by taking the heterogeneity nature of local data into account.

• We propose a fair FL algorithm based on agent clustering (FOCUS) to improve fairness measured
by FAA, especially in the non-IID settings. We prove the convergence rate and optimality of
FOCUS under linear models and general convex losses.

• We prove that FOCUS achieves stronger fairness measured by FAA compared with FedAvg on
both linear models and general convex losses.

• Empirically, we compare FOCUS with FedAvg on four datasets, including synthetic data, images,
and texts under non-IID data settings. We show that FOCUS indeed achieves stronger fairness
measured by FAA while maintaining similar or even higher prediction accuracy on all datasets.

2 Related work

Fair Federated Learning Fairness in FL has attracted great attention. Multiple frameworks have
attempted to address the fairness issue by enforcing accuracy parity and its variants among agents in
FL. Li et al. [20] first defined agent-level fairness by considering the accuracy equity across agents
and achieved the fairness by regularizing the agents with worse performance to have a higher weight
in the final objective function. However, this definition of fairness fails to capture the heterogeneous
nature of local agents. Mohri et al. [26] pursues accuracy parity by improving the worst-performing
agent. In addition, it [33] aims to reduce the disparity during the aggregation step [33], where the
server takes care of the gradients with high conflicts (e.g., have negative inner products or magnitudes
with large differences) before aggregation in each round. [35] predefines the agent contribution levels
based on an a priori assessment of data, which lacks quantitative measurement metrics in practice,
while we estimate the agents’ inherent distribution directly based on the model performance.

Clustered Federated Learning Clustered FL algorithm is initially designed for multitasking
and personalized federated learning, which assumes that agents can be naturally partitioned into
clusters [12, 34, 30, 22]. The existing clustering criterion includes the clustering mechanism, which
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aims to achieve the lowest loss [12], or to optimize the clustering center to be close to the local
model [34]. Another common metric is the gradient similarity, where agents with similar gradient
updates (with respect to, e.g., cosine similarity [30]) are assigned to the same group. Besides the
more straightforward hard clustering, soft clustering has also been proposed [22, 18, 29, 32], which
enables the agents to benefit from multiple parties. However, none of these works considers fairness
and its implications, and our work will make the first attempt to bridge them.

3 Fair Federated Learning on Heterogeneous Data

In this section, we first define fairness via agent-awareness (FAA) under the setting of federated
learning with heterogeneous data, and then introduce our fair federated learning based on agent
clustering (FOCUS) algorithm to achieve FAA.

3.1 Fairness via Agent-Awareness under FL with Heterogeneous Data

Given a set of E agents participated in the FL training process, each agent e only has accesses to
its local dataset: De = {(xe, ye)}nei=1, which is sampled from a distribution Pe. The overall goal
is to minimize the population loss LE(θ) based on the local loss Le(θe) of each agent through
communicating privacy-preserving gradient information:

LE(θ) =
∑

e∈E

|De|
n
Le(θe), Le(θe) = E(x,y)∈Pe`(hθe(x), y). (1)

where `(·, ·) is a loss function that measures the difference between model prediction hθe(x) and
target label y and n represents the total number of training samples.

In such a training scenario, agents across the federated network may have heterogeneous data, causing
the final model to sacrifice the performance for partial or all agents. Regarding this issue, the existing
study defines agent-level fairness based on the accuracy equity among agents [20]. However, such a
fairness definition fails to capture the heterogeneity of local data distributions. For instance, consider
a simple scenario when an agent e samples its data from random noises. The fairness defined by
accuracy equity does not provide meaningful measurement since the test accuracy of e cannot be
improved anyway. Moreover, adopting the fairness metric of accuracy equity among agents as
a training objective might lead to unforeseen subsequences for agents with heterogeneous data.
Intuitively, the performance of the agents with high-quality data distribution (e.g., clean or better
generality) can be severely compromised by the agents with low-quality data (e.g., noisy or lower
generality). This will not only impair the overall performance of the aggregated model but also lead
to unfair performance for agents with high-quality data. That is to say, the measurement of fairness in
FL should be able to recognize and characterize the distinctions of data distributions (contributions)
among agents. To provide such a fairness definition for FL considering the contribution of local
agents, we define FAA: fairness via agent-awareness for federated learning as follows:

Definition 1 (Fairness via agent-awareness for FL (FAA)). Suppose a set of agents E takes part
in a federated learning framework. The overall fairness among all agents is defined as the maximal
excess risk difference between two agents.

F(θ) = max
e1,e2∈E

∣∣∣Ee1(θe1)− Ee2(θe2)
∣∣∣. (2)

where the excess risk for an agent e ∈ E represents the population loss (Le(·)) difference between
the aggregated model and the Bayes optimal error on the data distribution

Ee(θ) = Le(θ)−min
w
Le(w). (3)

Definition 1 is a data-dependent measurement of agent-level fairness. Instead of forcing accuracy
equity among all agents regardless of their data distributions, we define agent-level fairness as the
equity of excess risks among agents that model the local data contribution. We claim that this
definition provides meaningful measurements even in the worst case, i.e., when some agents have
random noises as local data, as shown in section 5. We note that lower FAA indicates stronger
fairness among agents according to the definition.
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3.2 Fair Federated Learning on Heterogeneous Data via Clustering (FOCUS)

Method Overview. To achieve the fairness definition FAA defined in Section 3.1, we provide an
agent clustering-based FL algorithm (FOCUS) by partitioning agents based on their data properties.
The key intuition is that grouping agents with similar data distributions together makes FL fair since
it reduces the intra-cluster data heterogeneity. Such principle has also been used for other purposes,
such as personalization [22]. We will analyze the fairness achieved by FOCUS and compare it with
the standard FedAvg both theoretically (Section 4.2) and empirically (Section 5).

We first elaborate our FOCUS algorithm, which leverages the Expectation-Maximization algorithm for
agent clustering. We define M as the number of clusters and E as the number of agents. The goal of
FOCUS is to simultaneously optimize the soft clustering labels Π and model weights W . Specifically,
Π = {πem}e∈[E],m∈[M ] are the dynamic soft clustering labels, representing the estimated probability
that agent e belongs to cluster m; W = {wm}m∈[M ] represents the model weights for M trained
models based on different agent clusters. Suppose there are E agents with datasets D1, . . . , DE . Our
FOCUS algorithm follows a two-step scheme that alternately optimizes Π and W .

E step. Expectation steps update the cluster labels Π given the current estimation of (Π,W ). In the
k-th communication round, the server broadcasts the M models to all agents and asks them to report
the expected training loss E(x,y)∈De`(x, y;w

(k)
m ) for each model m ∈ [M ]. The server then updates

the soft clustering labels Π according to Eq. (8).

M step. The goal of M steps in Eq. (9) is to minimize a weighted sum of empirical losses for all
local agents. However, given distributed data, it is impossible to find its exact optimal solution in
practice. Thus, we specify a concrete protocol in Eq. (4) ∼ Eq. (6) to estimate the objective in Eq. (9).
At the k-th M step, the central server broadcasts weights w(k)

m of the M models to every agent. Each
agent e first initializes its models θ(0)

em as w(k)
m , and then updates the models using its own dataset.

To reduce communication costs, each agent is allowed to run SGD locally for T rounds as shown
in Eq. (5). After T rounds, each agent should send the updated models θ(T )

em back to the central
server; and the server synchronizes the models by a weighted average of all agents. We will provide
theoretical analysis for the convergence and optimality of FOCUS considering these multiple local
updates in Section 4.

θ(0)
em = w(k)

m . (4)

θ(t+1)
em = θ(t)

em − ηt∇
ne∑
i=1

`
(
hθem(x(i)

e ), y(i)
e

)
,∀t = 1, . . . , T − 1. (5)

w(k+1)
m =

E∑
e=1

π
(k+1)
em θ

(T )
em∑E

e′=1 π
(k+1)
e′m

. (6)

Inference. At inference time, each agent ensembles the M models by a weighted average on their
prediction probabilities, i.e., a agent e predicts

∑M
m=1 πemhwm(x) for input x. Suppose a test dataset

Dtest
e is sampled from distribution Pe. The test loss can be calculated by

Ltest(W,Π) =
1

|Dtest
e |

∑
(x,y)∈Dteste

`
( M∑
m=1

πemhw(x), y
)

(7)

For unseen agents that do not participate in the training process, their clustering labels Π are unknown.
Therefore, an unseen agent e should compute its one-shot clustering label π(1)

em,m ∈ [M ] according
to Eq. (8); and outputs predictions

∑M
m=1 π

(1)
emhwm(x) for the test sample x.

4 Theoretical Analysis of FOCUS

In this section, we first present the convergence and optimality guarantees of our EM-based FOCUS
algorithm; and then prove it improves the fairness of FL regarding FAA among agents. Our analysis
considers linear models with Gaussian data distribution and then extends to nonlinear models with
smooth and strongly convex loss functions.
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Algorithm 1 EM clustered federated learning algorithm
Input: Data D1, . . . , DE ; E remote agents and M learning models.

Initialize weights w(0)
m and π(0)

em = 1
M

for m ∈ [M ] and e ∈ [E].
for k = 0 to K − 1 do

for agent e ∈ [E] do
for model m ∈ [M ] do

E step:
π(k+1)
em ←

π
(k)
em exp

(
−E(x,y)∈De`(x, y;w

(k)
m )
)

∑M
m=1 π

(k)
em exp

(
−E(x,y)∈De`(x, y;w

(k)
m )
) (8)

end for
end for
for model m ∈ [M ] do

M step:
w(k+1)
m ← arg min

w

E∑
e=1

π(k+1)
em

ne∑
i=1

`
(
hw(x(i)e ), y(i)e

)
(9)

end for
end for
return model weights w(K)

m

4.1 Convergence Analysis

Linear models We first start with linear models for analysis simplicity. Suppose there are E agents,
each with a local dataset De = {(x(i)

e , y
(i)
e )}nei=1, (e ∈ [E]) generated from a Gaussian distribution.

Specifically, we assume each dataset De has a mean vector µe ∈ Rd, so (x
(i)
e , y

(i)
e ) is be generated by

y
(i)
e = µTe x

(i)
e + ε

(i)
e , where x(i)

e is a random vector x(i)
e ∼ N (0, δ2Id) and the label y(i)

e is blurred
by some random noise ε(i)e ∼ N (0, σ2).

Each agent is asked to minimize the mean squared error to estimate µe, so the empirical loss function
for a local agent given dataset De is

Lemp(De;w) =
1

ne

ne∑
i=1

(wTx(i)
e − y(i)

e )2. (10)

We further make two assumptions about the heterogeneous agents.
Assumption 1 (Separable distributions). Suppose there are M predefined vectors {c1, . . . , cM}.
These vectors are Separable distributions if for any m1,m2 ∈ [M ], ‖cm1 − cm2‖ ≥ R. E agents are
divided into M subsets S1, . . . , SM . For any agent e ∈ Sm, ‖µe − cm‖ ≤ r < R

2 .

Assumption 2 (Proper initialization). Suppose we train M models and π(0)
em = 1

M ,∀e,m. Also
assume we pick an initialization wm for each model m ∈ [M ], such that

‖w(0)
m − cm‖ ≤ α =

R

2
− r −∆0. (11)

for some ∆0 > 0.

Assumption 1 guarantees that the heterogeneous data distributions are separable so that there exists
an optimal clustering, in which {c∗1, . . . , c∗M} are the centers of clusters. We also make assumptions
for weights initialization in Assumption 2 to ensure a slight bias for initialized weights w(0)

m towards
one of the cluster centers w∗m.

We present Theorem 1 to demonstrate the linear convergence rate to the optimal cluster centers for
FOCUS given Assumption 1 and Assumption 2. Detailed proofs can be found in Appendix A.1.

Theorem 1. With initialization π(0)
em = 1

M and ‖w(0)
m − cm‖ ≤ R

2 − r − ∆0 for some ∆0 > 0,
assuming ne = O(d), if learning rate η ≤ min( 1

4δ2 ,
β

T 3/2 ), the weights (Π,W ) converge by

π(k)
em ≥

1

1 + (M − 1) · exp(−2Rδ2∆0k)
(12)

E‖w(k)
m − cm‖22 ≤ (1− 2ηγmδ

2

M
)kT (‖w(0)

m − cm‖22 +A) +
2ηγmδ

2B

M −M(1− 2ηγmδ2

M
)T
. (13)

where k is the total number of communication rounds, and

A = 2ET (M−1)δ2

(1− 2ηδ2γm
M )T−exp(−2Rδ2∆0)

, B = 4η1/3β2/3δ2γmr + 16Eδ4β2 + η4/3β2/3δ3EO(δ2, σ2). (14)
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Proof sketch. To prove this theorem, we first consider E steps and M steps separately to derive two
lemmas (Lemmas 1 and 2). In E steps, the soft cluster labels πem increase for all e ∈ Sm, as long as
‖w(k)

m − cm‖ < ‖w(k)
m′ − cm‖,∀m′ 6= m. On the other hand, ‖w(k)

m − cm‖ are guaranteed to shrink
linearly as long as πem is large enough for any e ∈ Sm. We then integrate Lemmas 1 and 2 and prove
Theorem 1 using an induction statement.

Remarks. Theorem 1 shows the convergence of parameters (Π,W ) to a near optimal solution
given linear models. The error term A diminishes exponentially, while the error floor B depends on
intra-cluster distribution divergence r and noise level σ. Moreover, this error floor B diminishes as
the learning rate η decreases.

Smooth and strongly convex loss functions Next, we extend the convergence analysis to a more
general case where the loss functions are L-smooth and µ-strongly convex.
Assumption 3 (Smooth and strongly convex loss functions). The population loss functions Le(θ)
for each agent e is L-smooth,

‖∇2Le(θ)‖2 ≤ L (15)

and µ-strongly convex, i.e., the eigenvalues λ of the Hessian matrix∇2Le(θ) satisfy:

λmin(∇2Le(θ)) ≥ µ. (16)

Assumption 4 (Separable distributions). E agents are partitioned into M subsets S1, . . . , SM . The
population loss function Le(θ) of agent e reaches its minimum at θ∗e . All agents e ∈ Sm are assumed
to share similar data distribution, so that their optimal weights θ∗e are close to each other:

‖θ∗e − w∗m‖ ≤ r (17)

On the other hand, agents from different subsets have very different data distributions, so

‖w∗m1
− w∗m2

‖ ≥ R,∀m1,m2 ∈ [M ],m1 6= m2. (18)

Assumption 5 (Proper Initialization). Let π(0)
em = 1

M and

‖w(0)
m − w∗m‖ ≤ α =

√
µR

√
µ+
√
L
− r −∆0. (19)

for some ∆0 > 0.

Theorem 2. Suppose loss functions have bounded variance for gradients on local datasets, i.e.,
E(x,y)∼De [‖∇`(x, y; θ)−∇Le(θ)‖22] ≤ σ2. Assume population losses are bounded, i.e., Le ∈
G,∀e ∈ [E]. With initialization π(0)

em = 1
M and ‖w(0)

m − w∗m‖ ≤
√
µR

√
µ+
√
L
− r −∆0 for some ∆0 > 0,

if each agent chooses learning rate η ≤ min( 1
2(µ+L) ,

β
T 3/2 ), the weights (Π,W ) converges by

π(k)
em ≥

1

1 + (M − 1) exp(−µR∆0n)
, ∀t ∈ Sm (20)

E‖w(k)
m − w∗m‖2 ≤ (1− ηA)kT (‖w(0)

m − w∗m‖2 +B) +
ηAC

1− (1− ηA)T
. (21)

where k is the total number of communication rounds, and

A =
2γm
M

µL

µ+ L
,B =

G(M − 1)TE( 4L
µ

+ 6
µ(µ+L)

)

(1− ηA)T − exp(−µR∆0)
, (22)

C = η1/3β2/3(2γmLr

√
2G

µ
+O(r2)) +

4EGL2β2

µ
+ η4/3β2/3Eσ

2

ne
. (23)

Proof sketch. We analyze the evolution of parameters (Π,W ) for E steps in Lemma 3 and M steps
in Lemma 4. Lemma 3 shows that the soft cluster labels πem increase for all e ∈ Sm in E steps as
long as ‖wm − w∗m‖2 <

√
µR

√
µ+
√
L
− r; whereas Lemma 4 guarantees that the model weights wm get

closer to the optimal solution w∗m in M steps. We combine Lemmas 3 and 4 together by induction to
prove this theorem. Detailed proofs are deferred to Appendix A.2.3.
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Remarks. Theorem 2 extends the convergence guarantee of (Π,W ) from linear models (Theorem 1)
to general models with smooth and convex loss functions. For any agent e that belongs to a cluster
m (e ∈ Sm), its soft cluster label πem converges to 1. Meanwhile, the model weights W converge
linearly to the optimal weights of each cluster with an error floor C. Given proper learning rate, the
error floor C depends on the intra-cluster distribution deviation r and variance σ, regardless the local
iterations in each round T to allow optimal local updates.

4.2 Fairness Analysis

To theoretically show FOCUS achieves higher fairness in FL based on FAA, we focus on a simple
yet representative case in which all agents share similar distributions except one outlier agent.

Linear models We first concretize the outlier distribution scenario for linear models. Suppose we
have E agents learning weights for M linear models. Their datasets De(e ∈ [E]) are generated
by y(i)

e = µTe x
(i)
e − ε(i)e with x(i)

e ∼ N (0, δ2Id) and ε(i)e ∼ N (0, σ2). E − 1 agents learn from
normal dataset with ground truth vector µ1, . . . , µE−1 with ‖µe − µ∗‖2 ≤ r, while the E-th agent
has an outlier data distribution, with its the ground truth vector µE far away from other agents, i.e.,
‖µE − µ∗‖2 ≥ R.

As we stated in Theorem 1, the model weights (Π,W ) converge linearly to the global optimum.
Therefore, we analyze the fairness of FOCUS, assuming an optimal (Π,W ) is reached.

We compare FEM with the fairness achieved by the FedAvg algorithm [23] to underscore how agent
clustering helps mitigate the unfairness among different agents.
Theorem 3. When a single agent has outlier distribution, the fairness FAA achieved by FOCUS
algorithm with two clusters M = 2 is

FEM (W,Π) ≤ δ2r2. (24)

while the fairness FAA of FedAvg algorithm is

Favg(W ) ≥ δ2
(R2(E − 2)− 2Rr

E
+ r2

)
= Ω(δ2R2). (25)

Proof sketch. According to Theorem 1, the agents e ∈ [E − 1] with similar distributions converge to

the same cluster, producing an aggregated model wm1 =
∑E
e=1 µe
E−1 ; while the outlier agent is separated

from normal agents and train another model wm2
on its own. The detailed proofs are based on these

observations and are deferred to Appendix B.1.

Remarks. When a single outlier exists, the fairness gap between the Fedavg algorithm and FOCUS
is shown by Theorem 3.

Favg(W )−FEM (W,Π) ≥ δ2
(R2(E − 2)− 2Rr

E

)
. (26)

As long as R > 2r
E−2 , FOCUS is guaranteed to be fairer than Fedavg in terms of FAA. We only

discuss the scenario of a single outlier agent here for clarity, but similar conclusions can be drawn for
multiple underlying clusters and M > 2.

Smooth and strongly convex loss functions We generalize the fairness analysis for linear models
to nonlinear models with smooth and convex loss functions. To illustrate the superiority of our
FOCUS algorithms in terms of fairness based on FAA, we similarly consider training in the presence
of an outlier data distribution.

Suppose we have E agents that learn weights for M models. We assume their population loss
functions are L-smooth, µ-strongly convex (as in Assumption 3) and bounded, i.e., Le(θ) ≤ G.
E − 1 agents learn from similar data distributions. Specifically, we assume the total variation
distance between the distributions of any two different agents i, j ∈ [E − 1] is not greater than r:
DTV (Pi,Pj) ≤ r. On the other hand, the E-th agent has an outlier data distribution, such that
LE(θ∗i ) − LE(θ∗E) ≥ R for any i ∈ [E − 1]. We claim that this assumption can be reduced to a
lower bound on H-divergence [37] between distributions Pi and PE that DH(Pi,PE) ≥ LR

4µ . (See
proofs in Appendix B.3.)
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Theorem 4. The fairness FAA achieved by FOCUS with two clusters M = 2 is

FEM (W,Π) ≤ 2Gr

E − 1
(27)

while the fairness of FedAvg algorithm is

Favg(W ) ≥
(E − 1

E
− L

µE2

)
R−

(
1 +

L(E − 1)

µE
− L2

µ2E

)
B − 2L

µE

√
B(R− L

µ
B) (28)

where B = 2Gr
E−1 .

Proof sketch. According to Theorem 2, agents that normal distributions e ∈ [E − 1] would converge

to the same cluster and produce a model wm1
=

∑E−1
e=1 θ∗e
E−1 .; while the outlier agent trains another

model wm2 on its own. We proof Theorem 4 based on these observations in Appendix B.2.

Remarks. Specifically, when the outlier distribution is very different from the normal distribution,
such that R� Gr (which means B � R), we simplify Eq. (28) as

Favg(W ) ≥ (
E − 1

E
− L

µE2
)R. (29)

Note that FM (W,Π) ≤ B � R, so the fairness FAA of FedAvg Favg(W,Π) is always larger than

FAA of FOCUS FM (W ), as long as E ≥
√

L
µ .

5 Experimental Evaluation

We conduct extensive experiments on various non-IID data settings to evaluate the fairness measured
by FAA for FOCUS and FedAvg [23]. We show that FOCUS achieves significantly higher fairness
measured by FAA compared with FedAvg while maintaining similar or even higher accuracy.

5.1 Experimental Setup

Data and Models. We carry out experiments on four different datasets with heterogeneous data
settings, ranging from synthetic data for linear models to images (rotated MNIST [7] and rotated
CIFAR [17]), to text data for sentiment classification on Yelp [36] and IMDb [21] datasets. We train
a fully connected model consisting of two linear layers with ReLU activations for MNIST, a ResNet
18 model [13] for CIFAR, and a pre-trained BERT-base model [8] for the text data. We refer the
readers to Appendix C for more implementation details.

Evaluation Metrics. We consider three evaluation metrics: average test accuracy, average test loss,
and FAA for fairness. For FedAvg, we evaluate the trained global model on each agent’s test data;
for FOCUS, we train M models corresponding to M clusters, and use the soft clustering labels
Π = {πem}e∈[E],m∈[M ] to make aggregated predictions on each agent’s test data.

To evaluate FAA of different algorithms, we need to estimate the Bayes optimal loss minw Le(w) for
each local agent e. Thus, we train a centralized model based on each subset of agents with similar
data distributions (i.e., the same ground-truth cluster) and use it as a surrogate to approximate the
Bayes optimum. We select the agents with maximal and minimal excess risks among all, which
represents the worst agent pair in terms of fairness, and calculate its gap as FAA (Definition 1). Note
that lower FAA indicates stronger fairness by definition.

5.2 Evaluation Results

Synthetic data for linear models. We first evaluate FOCUS on linear regression models with
synthetic datasets. We setup E = 50 agents with data sampled from Gaussian distributions. Each
agent e is assigned with a local dataset of De = {(x(i)

e , y
(i)
e )}nei=1 generated by y(i)

e = µTe x
(i)
e + ε

(i)
e

with x(i)
e ∼ N (0, Id) and ε(i)e ∼ N (0, σ2). We study the case considered in Section 4.2 when a single

agent has an outlier data distribution. We set the intra-cluster distance r = 0.01 and the inter-cluster
distance R = 1 in our experiment. Table 1 shows that FOCUS achieves FAA of 0.001, which is much
lower than the FAA 0.958 by FedAvg. Note that since it is a regression task, we mainly report the
average test loss instead of accuracy here.
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Table 1: Comparison of FOCUS and FedAvg on different datasets in terms of average test accuracy, average
test loss, and fairness FAA. FOCUS achieves stronger fairness measured by FAA compared to FedAvg.

Synthetic Rotated MNIST Rotated CIFAR Yelp/IMDb
FOCUS FedAvg FOCUS FedAvg FOCUS FedAvg FOCUS FedAvg

Average test accuracy - - 0.953 0.929 0.876 0.843 0.940 0.940
Average test loss 0.010 0.031 0.152 0.246 0.272 0.873 0.186 0.236
FAA 0.001 0.958 0.094 0.363 0.587 2.933 0.064 0.098
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Figure 1: The excess risk of different agents trained with FedAvg and FOCUS. C1, C2 denote cluster 1, cluster2.
Left: MNIST; right: sentiment classification on text data.

Rotated MNIST and CIFAR. Following [12], we rotate the images MNIST and CIFAR datasets
with different degrees to create data heterogeneity among agents. Both datasets are evenly split into
10 subsets for 10 agents. For MNIST, 2 subsets are rotated for 90 degrees, 1 subset is rotated for 180
degrees, and the rest 7 subsets are unchanged, yielding an FL setup with three ground-truth clusters.
Similarly, for CIFAR, we rotate the images of 3 subsets for 180 degrees, thus creating two clusters.

As shown in Table 1, FOCUS achieves higher average test accuracy, lower average test loss, and
lower FAA on both datasets. Fig. 1 (left) shows the surrogate excess risk of every agents on MNIST.
We can observe that for the outlier cluster that rotates 180 degrees (i.e., 3rd cluster), the single global
model of FedAvg has the highest test loss of 0.61, resulting in high excess risk in the 9th agent.
Moreover, the low-quality data of the outlier cluster affect the agents in the 1st cluster, which leads to
higher excess risk than that of FOCUS. On the other hand, FOCUS successfully identifies clusters
of the outlier distributions, i.e., cluster 2 and 3, rendering models trained from the outlier clusters
independent from the normal cluster 1. As shown in Fig. 1, our FOCUS reduces the excess risks of
all agents, especially for the outliers. This leads to a more uniform excess risk distribution among
agents. Similar trends are also observed in CIFAR, in which our FOCUS reduces the surrogate excess
risk for the 9th agent from 2.74 to 0.44. We omit the loss histogram of CIFAR to Appendix C.

Sentiment classification. For the sentiment classification task, Yelp (restaurant reviews) and IMDb
(movie reviews) datasets naturally form data heterogeneity among 10 agents and thus create 2 clusters.
Specifically, we sample 56k reviews from Yelp datasets distributed among 7 agents and use the whole
25k IMDB datasets distributed among 3 agents to simulate the non-IID data setting.

From Table 1, we can see that while the average test accuracy for FOCUS and FedAvg is close,
FOCUS achieves a much lower average test loss. Moreover, our FAA is significantly lower than
FedAvg, indicating higher fairness. We also observe that the excess risk on the outlier cluster (i.e.,
the 2nd cluster) drops significantly than that of FedAvg from Fig. 1 (right).

6 Conclusion

In this work, we provide an agent-level fairness measurement in FL (FAA) by taking the inherent
heterogeneous data properties of agents into account. Motivated by our fairness definition in FL, we
also provide an effective FL training algorithm FOCUS to achieve high fairness. We theoretically
analyze the convergence rate and optimality of FOCUS, and we prove that under mild conditions
FOCUS is always more fair than the standard FedAvg protocol. We conduct thorough experiments
on synthetic data with linear models as well as image and text datasets on deep neural networks. We
show that not only FOCUS achieves stronger fairness than FedAvg, but also FOCUS achieves similar
or even higher prediction accuracy across all datasets. We believe our work will inspire new research
efforts on exploring the suitable fairness measurements for FL under different requirements.
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A Convergence Proof

A.1 Convergence of Linear Models (Theorem 1)

A.1.1 Key Lemmas

We need to state two lemmas first before proving Theorem 1.

Lemma 1. Suppose e ∈ Sm and the m-th cluster is the one closest to cm. Assume ‖w(k)
m − cm‖ ≤

α < β ≤ minm′ 6=m ‖w(k)
m′ − cm‖. Then the E-step updates as

π(k+1)
em ≥ π

(k)
em

π
(k)
em + (1− π(k)

em) exp
(
− (β2 − α2 − 2(α+ β)r)δ2

) (30)

Remark. Our assumption of proper initialization guarantees that ‖w(0)
m − cm‖ ≤ α while ∀m′, we

have ‖wm′ − cm‖2 ≥ ‖cm − µ∗m′‖ − ‖wm′ − µ∗m′‖ = R− α. Hence, we substitute β = R− α and
α = R

2 − r −∆, which yields

π(k+1)
em ≥ π

(k)
em

π
(k)
em + (1− π(k)

em) exp(−2R∆δ2)
, ∀e ∈ Sm (31)

For M-steps, the local agents are initialized with θ(0)
em = w

(k)
m . Then for t = 1, . . . , T − 1, each agent

use local SGD to update its personal model:

θ(t+1)
em = θem − ηtgem(θem) = θ(t)

em − ηt∇
ne∑
i=1

`(hθem(x(i)
e ), y(i)

e ). (32)

To analyze the aggregated model Eq. (6), we define a sequence of virtual aggregated models ŵ(t)
m .

ŵ(t)
m =

E∑
e=1

πemθ
(t)
em∑E

e′=1 πe′m
. (33)

Lemma 2. Suppose any agent e ∈ Sm has a soft clustering label π(k+1)
em ≥ p. Then one step of local

SGD updates ŵ(t)
m by Eq. (34), if the learning rate ηt ≤ 1

4δ2 .

E‖ŵ(t+1)
m − cm‖22 ≤ (1− 2ηtγmpδ

2)E‖ŵ(t+1)
m − cm‖22 + ηtA1 + η2

tA2. (34)

A1 = 4γmrδ
2 + 2δ2E(1− p), A2 = 16E(T − 1)2δ4 +O(

d

ne
)E(δ4 + δ2σ2) (35)

Remark. Using the recursive relation in Lemma 2, if the learning rate ηt is fixed, the sequence ŵ(t)
m

has a convergence rate of

E‖ŵ(t)
m − cm‖22 ≤ (1− 2ηγmpδ

2)tE‖ŵ(0)
m − cm‖22 + ηt(A1 + ηA2). (36)

A.1.2 Completing the Proof of Theorem 1

We now combine Lemma 1 and Lemma 2 to prove Theorem 1. The theorem is restated below.

Theorem 1. With initialization π(0)
em = 1

M and ‖w(0)
m − cm‖ ≤ R

2 − r − ∆0 for some ∆0 > 0,
assuming ne = O(d), if learning rate η ≤ min( 1

4δ2 ,
β

T 3/2 ), the weights (Π,W ) converge by

π(k)
em ≥

1

1 + (M − 1) · exp(−2Rδ2∆0k)
(37)

E‖w(k)
m − cm‖22 ≤ (1− 2ηγmδ

2

M
)kT (‖w(0)

m − cm‖22 +A) +
2ηγmδ

2B

M −M(1− 2ηγmδ2

M
)T
. (38)

where k is the total number of communication rounds, and

A = 2ET (M−1)δ2

(1− 2ηδ2γm
M )T−exp(−2Rδ2∆0)

, B = 4η1/3β2/3δ2γmr + 16Eδ4β2 + η4/3β2/3δEO(δ4 + δ2σ2). (39)
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Proof. We prove Theorem 1 by induction. Suppose

π(k)
em ≥

1

1 + (M − 1) exp(−2Rδ2∆0k)
(40)

E‖w(k)
m − cm‖2 ≤ (1− 2ηγmδ

2

M
)kT (‖w(0)

m − cm‖2) +A
(

(1− 2ηγmδ
2

M
)kT − exp

(
−2Rδ2∆0k

))
+

2ηγmδ
2B

M −M(1− 2ηγmδ2

M )T
. (41)

Then according to Lemma 1,

π(k+1)
em ≥ π

(k)
em

π
(k)
em + (1− π(k)

em) exp(−2R∆0δ2)
(42)

≥ 1

1 + (M − 1) exp(−2Rδ2∆0n) exp(−2R∆0δ2)
(43)

≥ 1

1 + (M − 1) exp(−2R∆0δ2(k + 1))
. (44)

We recall the virtual sequence of ŵm defined by Eq. (33). Since models are synchronized after T
rounds, the know ŵ

(0)
m = w

(k)
m and w(k+1)

m = ŵ
(T )
m . We then apply Lemma 2 to prove the induction.

Note that instead of proving Eq. (38), we prove a stronger induction hypothesis of .

E‖w(k+1)
m − c∗m‖2

= E‖ŵ(T )
m − cm‖2 (45)

≤ (1− 2ηγmpδ
2)TE‖ŵ(k)

m − cm‖2 + ηT (A1 + ηA2) (46)

≤ (1− 2ηγmpδ
2)T
(

(1− 2ηγmδ
2

M
)kT ‖w(0)

m − cm‖2 +A((1− 2ηγmδ
2

M
)kT − exp

(
−2R∆0δ

2k
)
)

+
2ηγmδ

2B

M −M(1− 2ηγmδ2

M )T

)
+ ηT (4γmrδ

2 + 2δ2E(1− p)) + η2TA2 (47)

≤ (1− 2ηγmδ
2

M
)(k+1)T ‖w(0)

m − cm‖2

+A(1− 2ηγmδ
2

M
)(k+1)T −A exp

(
−2R∆0δ

2k
)
(1− 2ηγmδ

2

M
)T + 2δ2E(1− p)︸ ︷︷ ︸

D1

+ (1− 2ηγmδ
2

M
)T

2ηγmδ
2B

M −M(1− 2ηγmδ2

M )T
+ 4ηTγmrδ

2 + η2TA2︸ ︷︷ ︸
D2

. (48)

Note that 1− p ≤ (M − 1) exp
(
−2R∆0δ

2k
)
, so

D1 ≤ A(1− 2ηγmδ
2

M
)(k+1)T −A exp

(
−2R∆0δ

2k
)
(1− 2ηγmδ

2

M
)T + 2δ2ET (M − 1) exp

(
−2R∆0δ

2k
)

≤ A((1− 2ηγmδ
2

M
)(k+1)T − exp

(
−2R∆0δ

2(k + 1)
)
) (49)

By η ≤ β
T 3/2 , we have

D2 ≤ (1− 2ηγmδ
2

M
)T

2ηγmδ
2B

M −M(1− 2ηγmδ2

M )T
+ 4η1/3β2/3γmrδ

2 + 16Eδ4β2 + η4/3β2/3O(δ4 + δ2σ2)

=
2ηγmδ

2B

M −M(1− 2ηγmδ2

M )T
. (50)
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Finally we combine Eqs. (48) to (50) so

E‖w(k+1)−cm
m ‖2 ≤ (1− 2ηγmδ

2

M
)(k+1)T ‖w(0)

m − cm‖2 +A
(

(1− 2ηγmδ
2

M
)(k+1)T − exp

(
−2Rδ2∆0(k + 1)

))
+

2ηγmδ
2B

M −M(1− 2ηγmδ2

M
)T
. (51)

Since it is trivial to check that both induction hypotheses hold when k = 0, Theorem 1 is proved.

A.1.3 Deferred Proofs of Key Lemmas

Lemma 1.

Proof. For simplicity, we abbreviate the model weights w(k)
m by wm in the proof of this lemma. The

n-th E step updates the weights Π by

π(k+1)
em =

π
(k)
em exp

[
−E(x,y)∼De(wm

Tx− y)2
]∑

m′ π
(k)
em′ exp

[
−E(x,y)∼De(wm′

Tx− y)2
] (52)

so

π(k+1)
em =

π
(k)
em exp

(
−‖wm − µt‖2δ2

)∑
m′ π

(k)
em′ exp[−‖w′m − µt‖2δ2]

(53)

≥
π

(k)
em exp

(
−(β − r)2δ2

)
π

(k)
em exp(−(β − r)2δ2) +

∑
m′ 6=m π

(k)
em′ exp(−(α+ r)2δ2)

(54)

≥ π
(k)
em

π
(k)
em + (1− π(k)

em) exp
(
− (β2 − α2 − 2(α+ β)r)δ2

) (55)

Lemma 2.

Proof. Notice that local datasets are generated by Xe ∼ N (0, δ21ne×d) and ye = Xeµe + εe with
εe ∼ N (0, σ2). Therefore,

‖ŵ(t+1)
m − cm‖2 = ‖w(t)

m − cm − ηtgt‖2 (56)

= ‖ŵ(t)
m − cm − ηt

2

ne

∑
e

πemX
T
e Xe(θ

(t)
em − µe) +

2ηt
ne

∑
e

πemX
T
e εe‖2 (57)

= ‖ŵt − cm − ĝt‖2 + η2
t ‖gt − ĝt‖2 + 2ηt〈wt − cm − ĝt, ĝt − gt〉. (58)

where ĝt = 2
ne

∑
e πemE(XT

e Xe)(θ
(t)
em − µ). Since the expectation of the last term in Eq. (58) is

zero, we only need to estimate the expectation of ‖ŵ(t)
m − cm − ηtĝt‖2 and ‖ĝt − gt‖2.

‖ŵ(t)
m − cm − ηtĝt‖2

= ‖ŵ(t)
m − cm‖2 +

4η2
t

n2
e

∑
e

πemE(XT
e Xe)‖θtem − µe‖2 −

4ηt
ne

∑
e

πem〈ŵ(t)
m − cm,E(XT

e Xe)(θ
(t)
em − µe)〉

= ‖ŵ(t)
m − cm‖2 + 4η2

t δ
2
∑
e

πem‖θ(t)
em − µe‖2 − 4ηt〈ŵ(t)

m − cm,
∑
e

πemδ
2(θ(t)

em − µe)〉︸ ︷︷ ︸
C1

. (59)
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C1 = −4ηt
∑
e

πem〈ŵ(t)
m − θ(t)

em, δ
2(θ(t)

em − µe)〉 − 4ηt
∑
e

πem〈θ(t)
em − cm, δ2(θ(t)

em − µe)〉 (60)

≤ 4
∑
e

πem‖ŵ(t)
m − θ(t)

em‖2 + 4δ4η2
t

∑
e

πem‖θ(t)
em − µe‖2 − 4ηtδ

2
∑
e

πem‖θ(t)
em − µe‖2

− 4ηtδ
2
∑
e

πem〈µe − cm, θ(t)
em − µe〉︸ ︷︷ ︸

C2

(61)

Since ηt ≤ 1
4δ2 ,

E‖ŵ(t)
m − cm − ηtĝt‖2 (62)

≤ E‖ŵ(t)
m − cm‖2 + (8δ4η2

t − 4ηtδ
2)
∑
e

πemE‖θ(t)
em − µe‖2 + 4

∑
e

πemE‖ŵ(t)
m − θ(t)

em‖2 + C2

(63)

≤ E‖ŵ(t)
m − cm‖2 − 2ηtδ

2
∑
e

πemE‖θ(t)
em − µe‖2 + 4

∑
e

πemE‖ŵ(t)
m − θ(t)

em‖2 + C2 (64)

Note that∑
e

πemE‖θ(t)
em − µe‖2 (65)

=
∑
e∈Sm

πemE‖θ(t)
em − µe‖2 +

∑
e 6∈Sm

πemE‖θ(t)
em − µe‖2 (66)

≥
∑
e∈Sm

πem(E‖θ(t)
em − cm‖2 + 2r + r2) +

∑
e6∈Sm

πemE‖θ(t)
em − µe‖2 (67)

=
∑
e∈Sm

πem(E‖ŵ(t)
m − cm‖2 + E‖ŵ(t)

m − θ(t)
em‖2 + 2r + r2) +

∑
e 6∈Sm

πemE‖θ(t)
em − µe‖2 (68)

And since ŵ(t)
m = E

∑
e πemθ

(t)
em, we have

4E
∑
e

πem‖ŵ(t)
m − θ(t)

em‖2 ≤ 4E
∑
e

πem‖ŵ(0)
m − θ(t)

em‖2 (69)

≤ 4
∑
e

πem(T − 1)E
t−1∑
t′

η′t
2‖ 2

ne
XT
e Xe(θ

(t)
em − µe)‖2 (70)

≤ 16η2
tE(T − 1)2δ4. (71)

Thus,

E‖ŵ(t)
m − cm − ηtĝt‖2 ≤ (1− 2ηtδ

2
∑
e

πem)E‖ŵ(t)
m − cm‖2 + 16η2

tE(T − 1)2δ4

−2ηtδ
2
∑
e 6∈Sm

πemE‖θ(t)
em − µe‖2 − 4ηtδ

2
∑
e

πem〈θ(t)
em − µe, µe − cm〉︸ ︷︷ ︸

C3

(72)

Since

C3 ≤ 2ηtδ
2
∑
6∈Sm

πem‖µe − cm‖2 − 4ηtδ
2
∑
e∈Sm

πem‖θ(t)
em + µe‖2‖µe − cm‖2 (73)

≤ 2ηtδ
2E(1− p) + 4ηtδ

2γmr (74)
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we have
E‖ŵ(t)

m −cm−ηtĝt‖2 ≤ (2ηtδ
2γmp)E‖ŵ(t)

m −cm‖2+16η2
tE(T−1)2δ4+2ηtδ

2E(1−p)+4ηtδ
2γmr

(75)

Notice that

E‖ĝt − gt‖2 = E
∑
e

4

n2
e

πem‖(XT
e Xe − E(XT

e Xe))(θ
(t)
em − µe)‖2 + E

∑
e

4

n2
e

∑
e

πem‖XT
e εe‖2

= E
O(dne)

n2
e

δ4 + E
O(dne)

n2
e

δ2σ2 (76)

so
E‖ŵ(t+1)

m − cm‖22 ≤ (1− 2ηtγmpδ
2)E‖ŵ(t)

m − cm‖22 + ηtA1 + η2
tA2 (77)

where
A1 = 4δ2γmr + 2δ2E(1− p) (78)

and
A2 = 16E(T − 1)2δ4 +O(

d

ne
)E(δ4 + δ2σ2). (79)

A.2 Convergence of Models with Smooth and Strongly Convex Losses (Theorem 2)

Here we present the detailed proof for Theorem 2.

A.2.1 Key Lemmas

We first state two lemmas for E-step updates and M-step updates, respectively. The proofs of both
lemmas are deferred to the Appendix A.2.3
Lemma 3. Suppose the loss function LPt(θ) is L-smooth and µ-strongly convex for any cluster m.
If ‖w(k)

m − w∗m‖ ≤
√
µR

√
µ+
√
L
− r −∆ for some ∆ > 0, then E-step updates as

π(k)
em ≥

π
(k)
em

π
(k)
em + (1− π(k)

em) exp(−µR∆)
. (80)

For M-steps, the local agents are initialized with θ(0)
em = w

(k)
m . Then for t = 1, . . . , T − 1, each agent

use local SGD to update its personal model:

θ(t+1)
em = θem − ηtgem(θem) = θ(t)

em − ηt∇
ne∑
i=1

`(hθem(x(i)
e ), y(i)

e ). (81)

To analyze the aggregated model Eq. (6), we define a sequence of virtual aggregated models ŵ(t)
m .

ŵ(t)
m =

E∑
e=1

πemθ
(t)
em∑E

e′=1 πe′m
. (82)

Lemma 4. Suppose for any agent e ∈ Sm, its soft clustering label π(k+1)
em ≥ p. Then one step local

SGD updates ŵ(t)
m by Eq. (83), if the learning rate ηt ≤ 1

2(µ+L) .

E‖ŵ(t+1)
m − w∗m‖22 ≤ (1− ηtA0)E‖ŵ(t)

m − w∗m‖22 + ηtA1 + η2
tA2. (83)

where
A0 =

2γmpµL

µ+ L
(84)

A1 = 2γmLr

√
2G

µ
+
G(1− p)E

µ
(4L+

6

µ+ L
) +O(r2). (85)

A2 =
4E(T − 1)2GL2

µ
+
Eσ2

ne
. (86)
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Remark. Using this recursive relation, if the learning rate ηt is fixed, the sequence ŵ(t+1)
m has a

convergence rate of

E‖ŵ(t)
m − w∗m‖2 ≤ (1− ηA0)tE‖ŵ(0)

m − w∗m‖2 + ηt(A1 + ηA2). (87)

Note that the error floor A2 = O(T 2) where T is the number of local SGD rounds. Therefore, we
choose the learning rate ηt ≤ min( 1

2(µ+L) ,
β

T 3/2 ) so that the error floor is independent from the
number of local SGD iterations T .

A.2.2 Completing the Proof of Theorem 2

Theorem 2. Suppose loss functions have bounded variance for gradients on local datasets, i.e.,
E(x,y)∼De [‖∇`(x, y; θ) − ∇Le(θ)‖22] ≤ σ2. Assume population losses are bounded, i.e., Le ∈
G,∀e ∈ [E]. With initialization π(0)

em = 1
M and ‖w(0)

m −w∗m‖ ≤
√
µR

√
µ+
√
L
− r−∆0 for some ∆0 > 0,

if each agent chooses learning rate η ≤ min( 1
2(µ+L) ,

β
T 3/2 ), the weights (Π,W ) converges by

π(k)
em ≥

1

1 + (M − 1) exp(−µR∆0n)
, ∀t ∈ Sm (88)

E‖w(k)
m − w∗m‖2 ≤ (1− ηA)kT (‖w(0)

m − w∗m‖2 +B) +
ηAC

1− (1− ηA)T
. (89)

where k is the total number of communication rounds, and

A =
2γm
M

µL

µ+ L
,B =

G(M − 1)TE( 4L
µ + 6

µ(µ+L) )

(1− ηA)T − exp(−µR∆0)
, (90)

C = η1/3β2/3(2γmLr

√
2G

µ
+O(r2)) +

4EGL2β2

µ
+ η4/3β2/3Eσ

2

ne
. (91)

Proof. The proof is quite similar to Theorem 5 for linear models: we follow an induction proof using
Lemma 4 and Lemma 5. Suppose Eq. (88) hold for step n. Then for any t ∈ Sm,

π(k+1)
em ≥ π

(k)
em

π
(k)
em + (1− π(k)

em) exp(−µR∆n)
(92)

≥ 1

1 + (M − 1) exp(−µR∆0n) exp(−µR∆n)
(93)

≥ 1

1 + (M − 1) exp(−µR∆0(k + 1))
(94)

We recall the virtual sequence ŵ(t)
m defined in Eq. (82). Models are synchronized after T rounds of

local iterations, so w(k+1)
m = ŵ

(T )
m . Thus, according to Lemma 4,

E‖w(k+1)
m − w∗m‖2 = E‖ŵ(T )

m − w∗m‖2 (95)

≤ (1− ηA0)TE‖w(k)
m − w∗m‖2 + ηT (A1 + ηA2) (96)

≤ (1− ηA0)T
(

(1− ηA)kT (E‖w(0)
m − w∗m‖2) +B((1− ηA)kT − exp(−µR∆0k)) +

ηAC

1− (1− ηA)T

)
+ ηT (A1 + ηA2)

(97)

≤ (1− ηA)(k+1)TE‖w(0)
m − w∗m‖2 + (1− ηA)TB

(
(1− ηA)kT − exp(−µR∆0k)

)
+ η

GT (1− p)E
µ

(4L+
6

µ+ L
)︸ ︷︷ ︸

F1

+ (1− ηA)T
ηAC

1− (1− ηA)T
+ ηT (2γmLr

√
2G

µ
+O(r2)) + η2TA2︸ ︷︷ ︸

F2

. (98)

For F1, we use the fact that

π(k+1)
em ≥ 1

1 + (M − 1) exp−(µR∆0(k + 1))
≥ 1− (M − 1) exp(−µR∆(N − 1)),
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so

F1 ≤ (1− ηA)TB
(
(1− ηA)kT − exp(−µR∆0n)

)
+ η

G(M − 1) exp(−µR∆0n)

µ
(4L+

6

µ+ L
)

(99)

= B
(

(1− ηA)(k+1)T − exp(−µR∆0n)
)

(100)

For F2, since η ≤ β
T 3/2 , we have

F2 ≤ (1− ηA)T
ηAC

1− (1− ηA)T
+ η1/3β2/3(2γmLr

√
2G

µ
+O(r2)) +

4EGL2β2

µ
+ η4/3β2/3Eσ

2

ne
(101)

=
ηAC

1− (1− ηA)T
. (102)

Combining F1 and F2 finishes the induction for Eq. (89).

A.2.3 Deferred Proofs of Key Lemmas

Lemma 3.

Proof. According to Algorithm 1,

π(k+1)
em =

π
(k)
em

π
(k)
em +

∑
m′ 6=m π

(k)
em′ exp

(
E`(x, y;wnm)− E`(x, y;wnm′)

) (103)

≥ π
(k)
em

π
(k)
em + (1− π(k)

em) exp
(

maxm′ 6=m(LPt(w
(k)
m )− LPt(w

(k)
m′ ))

) (104)

Since LPt is L-smooth and µ-strongly convex,

LPt(w(k)
m )− LPt(w

(k)
m′ ) ≤

L

2
‖w(k)

m − θ∗t ‖2 −
µ

2
‖w(k)

m′ − θ
∗
t ‖2

≤ L

2
(

√
µR

√
µ+
√
L
−∆)2 − µ

2
(

√
LR

√
µ+
√
L

+ ∆)2

≤ −
√
µLR∆ +

L− µ
2

∆2 ≤ −µR∆. (105)

Combining Eq. (104) and Eq. (105) completes our proof.

Lemma 4.

Proof. We define g(t)
m =

∑
e πem

1
ne

∑ne
i=1∇`(hθem(x

(i)
e ), y

(i)
e ) and ĝ(t)

m =
∑
e πem∇L(θ

(t)
em).

E‖ŵ(t+1)
m − w∗m‖2 = E‖ŵ(t)

m − w∗m − ηtgm‖2 (106)

= E‖ŵ(t)
m − w∗m − ηtĝ(t)

m ‖2 + η2
tE‖g(t)

m − ĝ(t)
m ‖2

+ 2ηtE〈w(t)
m − w∗m − ηtĝ(t)

m , ĝ(t)
m − g(t)

m 〉 (107)

= E‖ŵ(t)
m − w∗m − ηtĝ(t)

m ‖2 + η2
tE‖g(t)

m − ĝ(t)
m ‖2. (108)

The first term can be decomposed into

‖ŵ(t)
m − w∗m − ηtĝ(t)

m ‖2 = ‖ŵ(t)
m − w∗m‖2 + η2

t ‖ĝ(t)
m ‖2 − 2ηt〈ŵ(t)

m − w∗m, ĝ(t)
m 〉. (109)
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Note that

‖ĝ(t)
m ‖2 ≤

E∑
e=1

πem‖∇Le(θ(t)
em)‖2. (110)

− 〈ŵ(t)
m − w∗m, ĝ(t)

m 〉 = −
E∑
e=1

πem〈ŵ(t)
m − θem(t),∇Le(θ(t)

em)〉 −
E∑
e=1

πem〈θ(t)
em − w∗m,∇Le(θ(t)

em)〉.

(111)

We further decompose the two terms in Eq. (111) by

−2〈ŵ(t)
m − θ(t)

em,∇Le(θ(t)
em)〉 ≤ 1

ηt
‖ŵ(t)

m − θ(t)
em‖2 + ηt‖∇Le(θ(t)

em)‖2. (112)

and

〈θ(t)
em − w∗m,∇Le(θ(t)

em)〉 ≥ 〈θ(t)
em − w∗m,∇Le(θ(t)

em)−∇Le(w∗m)〉+ ‖∇Le(w∗m)‖2‖θ(t)
em − w∗m‖2.

(113)

≥ µL

µ+ L
‖θ(t)
em − w∗m‖2 +

1

µ+ L
‖∇Le(θ(t)

em −∇Le(w∗m))‖2 + ‖∇Le(w∗m)‖2‖θ(t)
em − w∗m‖2.

(114)

Therefore,

E‖ŵ(t+1)
m − w∗m‖2 = E‖ŵt − w∗m‖2 − 2ηt

µL

µ+ L

∑
e

πemE‖θ(t)
em − w∗m‖2︸ ︷︷ ︸

E1

+
∑
e

πemE‖ŵ(t)
m − θ(t)

em‖2︸ ︷︷ ︸
E2

+
(

2η2
t

∑
e

πemE‖∇Le(θ(t)
em)‖2 − 2ηt

1

µ+ L

∑
e

πemE‖∇Le(θ(t)
em)−∇Le(w∗m)‖2

)
︸ ︷︷ ︸

E3

+ 2ηtE
∑
e

πem‖θ(t)
em − w∗m‖2 · ‖∇Le(w∗m)‖2︸ ︷︷ ︸

E4

+ η2
tE‖g(t)

m − ĝ(t)
m ‖2︸ ︷︷ ︸

E5

.

(115)

E1 = E‖ŵt − w∗m‖2 − 2ηt
µL

µ+ L
E
(∑

e

πem‖ŵ(t)
m − w∗m‖2 +

∑
e

πem‖ŵ(t)
m − θ(t)

em‖2
)

≤ (1− 2ηtµLpγm
µ+ L

)E‖w(t)
m − w∗m‖2 + E2. (116)

E2 = E
∑
e

πem‖ŵ(t)
m − θ(t)

em‖2

= E
∑
e

πem‖(w(0)
m − θ(t)

em) + (θ(t)
em − w(t)

m )‖2

≤ E
∑
e

πem‖(w(0)
m − θ(t)

em)‖2

≤
∑
e

πem(T − 1)E
t−1∑
t′=0

ηt′
2‖gem(θ(t′)

em )‖2

≤ 2η2
tE(T − 1)2G2L2

µ
. (117)
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E3 = 2E
∑
e

πem

(
(η2
t −

ηt
µ+ L

)‖∇Le(θ(t)
em)‖2 +

2ηt
µ+ L

〈∇Le(θ(t)
em),∇Le(w∗m)〉 − ηt

‖∇Le(w∗m)‖2

µ+ L

)
≤ 2ηtE

∑
e

πem

( 1

2(µ+ L)
‖∇Le(θ(t)

em)‖2 +
1

µ+ L
〈∇Le(θ(t)

em),∇Le(w∗m)〉 − ‖∇Le(θ
(t)
em)‖2

µ+ L

)
≤ 6ηtE

‖∇Le(w∗m)‖2

µ+ L

≤ 6ηt
∑
e∈Sm

πem
L2r2

µ+ L
+ 6ηt

∑
e 6∈Sm

πem
2G

µ(µ+ L)

≤ ηtO(r2) + 6ηt
G(1− p)E
µ(µ+ L)

. (118)

E4 = 2ηtE
∑
e∈Sm

πem‖θ(t)
em − w∗m‖2 · ‖∇Le(w∗m)‖2 + 2ηtE

∑
e 6∈Sm

πem‖θ(t)
em − w∗m‖2 · ‖∇Le(w∗m)‖2

≤ 2ηtγmLr

√
2G

µ
+ 2ηt(1− p)EL ·

2G

µ
. (119)

E5 = η2
tE‖g(t)

m − ĝ(t)
m ‖2

≤ η2
tE
∥∥∥∑

e

πem

( 1

ne

ne∑
i=1

∇`(hθem(x(i)
e ), y(i)

e )− L(θ(t)
em)
)∥∥∥2

≤ η2
tE

σ2

ne
. (120)

Combining Eq. (116) to Eq. (120) yields the conclusion of Lemma 4.

B Fairness Analysis

B.1 Proof of Theorem 3

Proof. Let the first cluster m1 contain agents µ1, . . . , µE−1, while the second cluster contains only
the outlier µE . Then, for e = 1, . . . , E − 1,

Ee(wm1) = δ2

∥∥∥∥∥µe −
∑E−1
e′=1 µe′

E − 1

∥∥∥∥∥
2

≤ δ2r2 (121)

And for the outlier agent, the expected output is just the optimal solution, so

EE(wm2) = 0 (122)

As a result, the fairness of this algorithm is bounded by

FM (P ) = max
i,j∈[E]

|Ei(Π,W )− Ej(Π,W )| ≤ δ2r2. (123)

On the other hand, the expected final weights of of FedAvg algorithm is wavg = µ̄ =
∑E
e=1 µe
E , so

the expected loss for agent e shall be

E(x,y)∼Pe(`θ̂(x)) = Ex∼N (0,δ2Id),ε∼N (0,σ2)[(µ
T
i x+ ε− µ̄Tx)2] = σ2 + δ2‖µe − µ̄‖2 (124)
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The infimum risk for agent t1 is σ2
1 , and after subtracting it from the expected loss, we have

E1(wavg) = δ2‖µ1 − µ̄‖2

= δ2‖µ1 −
∑E−1
e=1 µ1

E
− µE

E
‖2

≤ δ2
(
r · E − 1

E
+
‖µ1 − µE‖

E

)2

≤ δ2(r · E − 1

E
+
R+ r

E
)2 = δ2(r +

R

E
)2 (125)

However for the outlier agent,

EPE (wavg) = δ2‖µE − µ̄‖2 (126)

= δ2

∥∥∥∥∥E − 1

E
µE −

∑E−1
e=1 µE
E

∥∥∥∥∥
2

(127)

≥
(E − 1

E

)2

δ2R2 (128)

Hence,

Favg(P ) ≥ EE(wavg)− E1(wavg) = δ2
(R2(E − 2)− 2Rr

E
+ r2

)
(129)

B.2 Proof of Theorem 4

Proof. Note that the local population loss for agent i with weights θ is

Li(θ) =

∫
pi(x, y)`(fθ(x), y)dxdy. (130)

Thus,

|Li(θ∗i )− Lj(θ∗i )| =
∫
|pi(x, y)− pj(x, y)| · `(fθ∗i (x), y)dxdy (131)

≤ G ·
∫
|pi(x, y)− pj(x, y)|dxdy ≤ Gr. (132)

Hence,
Li(θ∗j ) ≤ Lj(θ∗j ) +Gr ≤ Lj(θ∗i ) +Gr ≤ Li(θ∗i ) + 2Gr. (133)

For the cluster that combines agents {1, . . . , E − 1} together, the weight converges to
θ̄′ = 1

E−1

∑E−1
i=1 θ∗i . Then ∀i = 1, . . . , E − 1, the population loss for the ensemble predic-

tion

Li(θ,Π) = Li
(∑E−1

j=1 θ∗j

E − 1

)
(134)

≤ 1

T − 1

T−1∑
j=1

Li(θ∗j ) (135)

≤ Li(θ∗i ) +
2Gr

E − 1
. (136)

Therefore, for any i = 1, . . . , T − 1,

Ei(θ,Π) ≤ 2Gr

E − 1
. (137)

Since ET (θ,Π) = 0,

FEM (W,Π) ≤ 2Gr

E − 1
(138)
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Now we prove the second part of Theorem 4 for the fairness of Fedavg algorithm. For simplicity,
we define B = 2Gr

E−1 in this proof. Also, we denote the mean of all optimal weight θ̄ =
∑E
i=1 θ

∗
i

E and

θ̄′ =
∑E−1
i=1 θ∗i
E−1 .

Remember that we assume loss functions to be L-smooth, so

LE(θ∗i ) ≤ LE(θ̄′) + 〈∇LE(θ̄′), θ∗i − θ̄′〉+
L

2
‖θ̄′ − θi‖2. (139)

Taking summation over i = 1, . . . , E − 1, we get

LE(θ̄′) ≥ 1

E − 1

(E−1∑
i=1

LE(θ∗i )− 〈∇LE(θ̄′),

E−1∑
i=1

(θi − θ̄′)〉 −
L

2

E−1∑
i=1

‖θ̄′ − θi‖2
)

(140)

=
1

E − 1

(E−1∑
i=1

LE(θ∗i )− L

2

E−1∑
i=1

‖θ̄′ − θi‖2
)

(141)

≥ LE(θ∗E) +R− LB

µ
. (142)

The last inequality uses the µ-strongly convex condition that implies

B ≥ Li(θ̄′)− Li(θ∗i ) ≥ µ

2
‖θ̄′ − θi‖2. (143)

By L-smoothness, we have

LE(θ̄′) ≤ LE(θ̄) + 〈∇LE(θ̄), θ̄′ − θ̄〉+
L

2
‖θ̄′ − θ̄‖2. (144)

LE(θ∗E) ≤ LE(θ̄) + 〈∇LE(θ̄), θ∗E − θ̄〉+
L

2
‖θ∗E − θ̄‖2. (145)

Note that θ̄ =
θ̄′+(E−1)θ∗E

E , we take a weighted sum over the above two inequalities to cancel the dot
product terms out. We thus derive

LE(θ̄) ≥
(E − 1)LE(θ̄′) + LE(θ∗E)− L

2 (E − 1)‖θ̄′ − θ̄‖2 − L
2 ‖θ
∗
E − θ̄‖2

E
(146)

=
E − 1

E

(
R− LB

µ
− L‖θ∗E − θ̄′‖2

2E

)
+ LE(θ∗E). (147)

Note that LE(·) is µ-strongly convex, which means

R− LB

µ
≥ LE(θ̄′)− LE(θ∗E) ≥ µ

2
‖θ∗E − θ̄′‖2. (148)

so
LE(θ̄) ≥ (1− L

µE
) · E − 1

E
(R− LB

µ
) + LE(θ∗E). (149)

And
EE(θ̄) ≥ (1− L

µE
) · E − 1

E
(R− LB

µ
). (150)

On the other hand, for agent i = 1, . . . , E − 1 we know

Li(θ̄) ≤ Li(θ̄′) + 〈∇Li(θ̄′), θ̄ − θ̄′〉+
L

2
‖θ̄ − θ̄′‖2. (151)

By L smoothness,

‖∇Li(θ̄′)‖2 ≤ L‖θ̄′ − θ∗i ‖ ≤ L

√
2B

µ
. (152)

22



So

Li(θ̄) ≤ Li(θ∗i ) +B + L

√
2B

µ

√
2(R− LB

µ )

µ

1

E
+
L(R− LB

µ )

µE2
(153)

Ei(θ̄) ≤ B +
2L

µE

√
B(R− LB

µ
) +

L(R− LB
µ )

µE2
(154)

In conclusion, the fairness can be estimated by

Favg(P ) ≥ EE(θ̄)− E1(θ̄) (155)

≥
(E − 1

E
− L

µE2

)
R−

(
1 +

L(E − 1)

µE
− L2

µ2E

)
B − 2L

µE

√
B(R− L

µ
B) (156)

B.3 Proof of Divergence Reduction

Here we prove the claim that the assumption LE(θ∗e)− LE(θ∗E) ≥ R is implied by a lower bound of
the H-divergence [37].

DH(Pe,PE) ≥ LR

4µ
(157)

Proof. Note that

DH(Pe,PE) =
1

2
min
θ

(
Le(θ) + LE(θ)

)
+

1

2

(
Le(θ∗e) + LE(θ∗E)

)
(158)

≤ 1

2

(
Le(

θ∗e + θ∗E
2

) + LE(
θ∗e + θ∗E

2
)
)
− 1

2

(
Le(θ∗e) + LE(θ∗E)

)
(159)

≤ 1

2
× (

1

2
L‖θ

∗
E − θ∗e

2
‖22 × 2) (160)

=
1

8
L‖θ∗E − θ∗e‖22 (161)

Therefore,

LE(θ∗e)− LE(θ∗E) ≥ µ‖θ∗E − θ∗e‖22
2

(162)

≥ µ

2

8DH(Pe,PE)

L
= R. (163)

C Experimental Details

Here we elaborate more details of our experiments.

Machines. We simulate the federated learning setup on a Linux machine with AMD Ryzen Thread-
ripper 3990X 64-Core CPUs and 4 NVIDIA GeForce RTX 3090 GPUs.

Hyperparameters. For each FL experiment, we implement both FOCUS algorithm and FedAvg
algorithm using SGD optimizer with the same hyperparameter setting. Detailed hyperparameter
specifications are listed in Table 2 for different datasets, including learning rate, the number local
training steps, batch size, the number of training epochs, etc.
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Table 2: Dataset description and hyperparameters.
Dataset # training samples # test samples E M batch size learning rate local training epochs epochs

MNIST 60000 10000 10 3 6000 0.1 10 300

CIFAR 50000 10000 10 2 100 0.1 10 200

Yelp/IMDB 56000/25000 38000/25000 10 2 512 5e-5 2 3

D Broader Impact

This paper presents a novel definition of fairness via agent-level awareness for federated learning,
which takes the heterogeneity of local data distributions among agents into account. We develop FAA
as a fairness metric for Federated learning and design FOCUS algorithm to improve the corresponding
fairness. We believe that FAA can benefit the ML community as a standard measurement of fairness
for FL based on our theoretical analyses and empirical results.

A possible negative societal impact may come from the misunderstanding of our work. For example,
low FAA does not necessarily mean low loss or high accuracy. Additional utility evaluation metrics
are required to evaluate the overall performance of different federated learning algorithms. We have
tried our best to define our goal and metrics clearly in Section 3; and state all assumptions for our
theorems accurately in Section 4 to avoid potential misuse of our framework.
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