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Abstract

In this paper, we formalize a traffic game to illustrate traffic
problems happened on buses and subway systems. We ob-
serve that in reality a main feature of these systems under
peak hours is that severe congestion occurs only in one di-
rection. We thus study an interesting detouring behavior that
an individual may travel in the reverse direction for several
stops to ensure getting on bus or on train. To analyze this
behavior, another extensive form game is proposed, with its
subgame modeled as an M/D/1 queue. We show existence of
Nash equilibrium for the first traffic game with some addi-
tional restriction; and find ε-mixed strategy Nash equilibrium
for both games by simulation. The experimental results indi-
cates that rational individuals would detour when the traffic is
congested enough; and that this strategy would possibly harm
the traffic system.

Background
People in today’s modern cities have been accustomed to
the scene that thousands of people travels from uptown and
suburban areas to downtown and urban areas every morn-
ing of workdays. This phenomena puts great stress on the
traffic system, causing congestion at a specific period of a
day, which is usually referred to as the morning peak. Dur-
ing morning peaks, bus stops and subway stations are filled
with people who get up late and are hurrying up not to be
late for work. Therefore, this competition for limited traffic
resources among these workers naturally forms a game.

In this paper, a traffic game is formalize, abstracting the
main features from this battle of peak hours. The ultimate
goal of each player is to set off for work as late as pos-
sible while arriving before a deadline. To reflect the com-
mon rules of buses and subway systems, the traffic system
adopts a first-come-first-serve(FCFS) rule with a fixed serv-
ing rate. Despite the inherent incontinuity of the ordering
function exploited by FCFS rule, we show the existence of
Nash equilibrium by modifying the original game with vari-
ous approaches such as discretization or smoothing.

Aside from normal actions of queuing, a somewhat devi-
ous action, which we call detouring, is also taken into ac-
count. When Alice reaches a subway station and the queue
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is already very long, she may first travel in the reverse di-
rection for several stops and then travels back, jumping the
queue indirectly. Detouring may benefit some individuals,
but it is a waste of the traffic capacity since the person trav-
els longer. With more and more people adopting this strat-
egy, social welfare diminishes. It is thus an example of the
so-called ’involution’ that the pressure of competition leads
to bad results on every individuals. In this paper, we analyze
the behavior of detouring as a subgame with rules of M/D/1
queue model, incorporating corresponding conclusions from
Queuing Theory.

While a Nash equilibrium is hard to find in general, we
simulate these two games and successfully find ε Nash equi-
librium in an iterative manner.

Traffic game with no detouring
To simplify the game model and emphasize the main fea-
tures of the traffic issue, we assume everyone starts from a
same location for a same terminal points. The buses or trains
run periodically with a constant frequency f . Each bus or
train can only accommodate one passenger.

We define the traffic game as a 5-tuple Bayesian game
G = (I,A,Θ, c, p).

• I: a finite set of players.

• A = {Ai}ni=1: a set of actions for each player i.

• Θ = {Θi}: a set of types for each player i.

• c = (c1, . . . , cn), where ci : A × Θi → R is a cost
function for player i. The utility function of player i is
simply ui(a, θi) = −ci(a, θi).

• p: a joint probability distribution p(θ1, . . . , θn) over types.

Further specifications are made in our discussion. Action
spaces are homogeneous for each player Ai = [0, 1], cor-
responding to the time when each worker decides to set off
for work. The spaces of type are also the same Θi = [0, 1],
where the type of each player θi is drawn identically and
independently from a distribution p(θ).

With the purpose of capturing the realistic scene, the cost
function c is defined as: (t ∈ A, θi ∈ Θi)

ci(t, θi) =

{
g(θi − ti), if player i reaches in time,
M, Otherwise.

(1)



where g(·) captures the cost of getting up for work early, and
M is the penalty of being late for work. More specifically,
we assume the traffic system applies a first-come-first-serve
rule with a constant frequency f , so that a player i reaches
in time if and only if:

ti+ max
j=1,2,...,σ(i)−1

{
σ(i)− j −

ti − tσ−1(j)

f
, 0

}
≤ θi (2)

where σ : [0, 1]n → Sn is the ordering function of {ti}ni=1.

Existence of Nash equilibrium
A straightforward comment on the cost function is that it is
not even continuous. As a result, it does not necessarily has
a Nash equilibrium. Three possible independent approaches
may be applied so as to ensure a Nash equilibrium.

• Modification 1: Discretize time t ∈ [0, 1] to εbt/εc, mak-
ing G a finite game.

• Modification 2: For any different players i, j with ti = tj ,
they can be transported simultaneously. In other words,
they have different ordering function σ, which prioritize
themselves over other players with the same action, re-
spectively.

• Modification 3: Smooth the queuing function σ. ti is
ranked before tj iff t′i < t′j where t′i is drawn from a
probabilistic distribution `(ti). The ambiguity of t′i = t′j
is removed, since it happens with zero probability.

Followed directly from Nash Theorem (1951), the traf-
fic game G1 with modification 1 has a mixed strategy Nash
equilibrium. However, a crucial drawback of applying modi-
fication 1 is that it makes strategy space too large for compu-
tation. It is also a trivial inference that with modification 3,
the gameG3 possesses a pure strategy Nash equilibrium (us-
ing Debreu, Glicksberg, Fan, 1952). Moreover, with modi-
fication 2, a pure strategy Nash equilibrium can be surpris-
ingly proved to exist in G2 as well, with some additional
restriction.

Theorem 1. With modification 2, there exists a pure strategy
Nash equilibrium for traffic game G = (I,A,Θ, c, p) if:

• {θi}ni=1 is fixed and public;
• g is continuous, monotone increasing and bounded on do-

main [0, 1];
• The penalty M ≥ g(1).

Proof. It has been shown (Dasgupta and Maskin 1986) that
a game G with actions and corresponding utility (Ai, ui)
possesses a pure strategy Nash equilibrium, if ui is upper
semi-continuous and graph-continuous, and quasi-concave
in ai; while Ai is nonempty, convex and compact.

For simplicity, we only prove the most difficult statement
that ui(t, θi) is upper semi-continuous in t with θi fixed.
To see this, we shall first claim that the feasible space A∗
in which i is not late for work is compact. (The bound-
ary condition for θi is either condition 2 or θi ≥ θj for
some j 6= i, ensuring that it is closed.) Remember that
ui(t, θi) = −g(θi − ti) for t ∈ A∗ and g is continuous,

any sequence {tn} with limn→∞ tn → t and t ∈ A∗ would
have limn→∞ ui(t

n, θi) = ui(t, θi).
The only possible sequence that breaks the continuity is

{tn} with tn 6∈ A∗ but t = limn→∞ tn ∈ A∗. However,
tn ∈ arg mint′ ui(t

′, θ−i), given M ≥ g(1) ≥ g(x),∀x ∈
[0, 1]. Thus, it must be the case that

lim
n→∞

ui(t
n, θi) ≤ ui(t, θi) (3)

Despite the existence of Nash equilibrium in G when θ
is fixed and public, the game remains complicated if θ is
secret as in reality. With curiosity of finding a Bayesian Nash
equilibrium, it would be great to find a strategy profile σ,
such that

σi(θi) ∈ arg max
σ′i

Ui(σ
′
i, σ−i, θi) (4)

where Ui(σ′i, σ−i, θi) is the expected payoff of player i of
type θi:

Ui(σ
′
i, σ−i, θi) =

∑
θ−i

p(θ−i | θi)ui(σ′i, σ−i(θ−i), θi, θ−i)

=
∑
θ−i

∏
j 6=i

p(θj)ui(σi, σ−i(θ−i), θi) (5)

However, the complexity of condition 2 makes it not re-
alistic for finding such a Nash equilibrium. Therefore, we
would simulate the traffic game to find an ε-approximate
Nash equilibrium instead. We shall emphasize that this is not
too strong an assumption in reality. As long asM ≥ g(1)+ε,
players will not be satisfied by being late if setting off earlier
helps.

Traffic game with detouring
It has been pointed out that a strategy of detouring may ben-
efit an individual at least in a short term, when a player ob-
serves a long queue at a subway station. In this section, we
formalize an extensive form game Gd with imperfect infor-
mation (d stands for detouring) that takes this devious strat-
egy into account. For simplicity, the arrival deadline θi of
each player is assumed to be public.
Gd = (I,A, H,J , P, {ui}). (I, {ui} defined the same as

G).
• A = {Ai}ni=1.
• H: the set of history.
• J : a partition of non-terminal histories.
• P: an assignment of J ∈ J to I.

Each player i ∈ I makes two decisions in the whole
game tree. For the first decision, Ai(Jstart,i) = [0, 1],
in which i picks a favored time to set off. For the sec-
ond decision, player i chooses an action from Ai(Jk) =
{Join,Detour by x}, where k is the queuing length when
Ai reaches the subway station.

For clarity, think of n players choosing ti simultaneously.
We adopt the modification 3 in the previous section, so that
i reaches the subway station at t′i ∼ `(ti). They then play an
extensive form gameG′d in the order of σ(t′), choosing from



Figure 1: Traffic model with detouring behavior

{Join, Detour by x} with observation of the queue length at
t′i. If some players i choose to Detour by x, they travel back
for x stations to get on the bus.

For a better understanding of the detouring behavior, let
us only consider the subgameG′d, where each player is given
with t′i and utility function ui(ai) = −ti,arrive + t′i.
Theorem 2. A pure strategy si ∈ Ai is a never best re-
sponse, if at an information set Jk of G′d with P (Jk) = i
and k ≥ 3, si(Jk) = Join.

Proof. Suppose the queue has players {q1, q2, . . . , qk}.
With strategy si, q3 successfully takes on the m-th train. Let
s′i = Detour by bm−12 c (m ≥ 3 so bm−12 c ≥ 1). Then with
s′i, imust be able to get on them-th train. This is because all
j with t′j < t′i does not take this train before q3 does; while
all j with t′j > t′i meets the m-th train later than i does.

Corollary 3. Detouring happens as long as there are four
rational players i, j, k, l with t′i < t′j < t′k < t′l ≤ t′i + 1/f .

Several more interesting analyses can be deduced with the
help of queuing theory. In this paper, we only discuss a sim-
ple case of M/D/1 model, in which the arrival pattern t′
subjects to a Markovian process and the serving rate is de-
terministic. We shall especially point out that the length of
queue includes everyone in the traffic system.
Theorem 4. An M/D/1 queue with arrival rate λ and serv-
ing rate µ has a stationary state when ρ = λ

µ < 1 with:

• Average length of queue Ls = λ
µ + λ2

2µ(µ−λ) .
• The probability distribution of length is a bit more com-

plicated, but its generating function can be given by:
P (x) =

∑∞
n=0 pnx

n = (1−ρ)(1−x)
1−xeρ(1−x) . (See (Jain and Sig-

man 1996))
An straightforward observation is that choosing strategy

si = Detour by x actually helps a player can get on train if
the queue length keeps L ≤ x for f · x time. For si = Join,
this happens immediately when L = 0. However, this is not
a necessary condition for getting on train. The actual condi-
tion of getting on train is too complicated to depict analyti-
cally.

Simulation
Experiment 1
The simulation starts with the traffic game with no detouring
behavior. In our first experiment, N players are with θi cho-

Figure 2: The total cost of the found ε-Nash equilibrium (ε =
0.05, N = 10, µ = 0.6, σ = 0.2)

Figure 3: The convergence of total cost (N = 10, f = 20)

sen from Gaussian distribution N (µ, σ) (clipped to [0, 1])
and fixed. With random initialization, the strategy profile
is explored greedily by each player and updated with dis-
counted step size. The exploration stops as soon as the play-
ers find an ε-Nash equilibrium.

Figure 2 exhibits the total cost of ε-Nash equilibrium
found by our iterative method. The cost increases drasti-
cally when f/N under 2. This phenomena is caused by the
concentration of θi among a small period of time. It is dis-
covered that the greedily updating algorithm do stably con-
verges to an equilibrium (see figure 3).

Experiment 2: Detouring
The purpose of experiment 2 is to find an approximate Nash
equilibrium for the subgame G′d as described in previous
sections. Suppose there are K stations in total, forming a
huge M/D/1 queue with ρ = λ

f .
We formalizeG′d with a state spaceQ ⊆ NK×2K , denot-

ing the number people waiting at each station and whether
the K trains are empty. A strategy s of a player as an 4×K
matrix, where

∑k
j=1 sij = 1 for all i. According to our pre-



Figure 4: The convergence of multiplicative weight algo-
rithm on different setting of ρ.

vious analysis (Theorem 2), a player cannot choose to join
the queue when length ≥ 3, so s4,1 = 0. Consider a homo-
geneous equilibrium that everyone players the same strategy
s. Each strategy s must correspond to a stable probability
distribution on Q when ρ < 1 (Theorem 4), denoted by
p(q | s),

∑
q∈Q p(q | s) = 1. A Nash equilibrium of G′d re-

quires that p(q | s) is consistent with s, in the sense that s
must be a best response of p(q | s).

To reach such a Nash equilibrium (approximately), we
introduce multiplicative weight algorithm (Littlestone and
Warmuth 1994). We estimate the cost c(st) of strategy st
at its stable point p(q | st) by taking an average on the first
T arriving passengers. And then the multiplicative weight
algorithm is applied to update st:

wt+1
ij = wtij · (1− ε)c(st), 1 ≤ i ≤ 4, 1 ≤ j ≤ K. (6)

where st chooses action j when observing i with proba-
bility wtij/Wt. Experiments show that multiplicative weight
algorithm indeed converge to an ε-Nash equilibrium. We
simulate this game by 500,000 seconds with f = 20 and
K = 5. The arrival rate λ varies from 10 to 19.8, which
yields the results shown by figure 4.

With the same settings, it is also discovered that the un-
certainty of average cost when reaching ε-Nash equilibrium
increases rapidly when ρ > 0.9. (See figure 6. The black line
stands for the social optimal choice, as t =

(
ρ+ ρ2

2(1−ρ)

)
/f

indicated by theorem 4.) The social welfare deviates from
the optimal choice, as a result of the increasing probability
of detouring action. Figure 5 compares the mixed strategy at
ε-Nash equilibrium when the game G′d is set with different
ρ. In fact, when ρ < 0.9, the probability of choosing ’Join’
dominates every other detouring actions, except the cases
that the queuing length is greater or equal 3. Once ρ > 0.9,
however, passengers would prefer detouring for its own util-
ity, which may exacerbate the traffic jam and reduce social
welfare in the end.

Figure 5: The strategy profile at ε-Nash equilibrium when
for different ρ

Figure 6: Comparing the optimal expected waiting time
(black) and the average waiting time of the found equilib-
rium (blue).

Conclusion
In this paper, we defined, analyzed and simulated two games
based on real-world observations of common traffic systems.
The first game is modeled as a basis of the second. We pro-
posed three possible modifications to the incontinuous traffic
game and proved the existence of Nash equilibrium on the
modified games. To study the detouring behavior, we mod-
eled the second game as a stochastic process and borrowed
corresponding conclusions from queuing theory. After anal-
ysis and simulation, we found out a tendency of individuals
to choose the detouring behavior during peak hours, which
may harm the traffic system as a whole.

Appendix
All python codes used for simulating traffic games G and
G′d could be found at https://github.com/Qianhewu/Traffic-
Game.

Some additional definitions and explanations are listed
below for integrity.
Definition 1. A function ui : A → R is upper semi-
continuous if for any sequence {an} ⊆ A such that
limn→∞ an → a,

lim
n→∞

ui(a
n) ≤ ui(a) (7)

Definition 2. A function ui : A → R is graph continuous
if for any a ∈ A there exists a function Fi : A−i → Ai



with F (a−i) = ai, such that ui(Fi(a−i), ai) is continuous
at a−i = a−i.

The concept of ε-Nash equilibrium is used excessively
throughout our simulation. The exact definition is as follows.
Definition 3. A strategy profile s is an ε-Nash equilibrium
for a normal form game G = (A, {ui}) if for all i:

ui(si, s−i) ≥ ui(s′i, s−i)− ε,∀s′i ∈ Ai. (8)

We specify the greedy update applied in experiment 1 as

t
(k+1)
i =

θi − τ (k)i

k
I[θi − τ (k)i ≥ α]+

θi − τ (k)i − ε
k

I[θi − τ (k)i < α] + (θi − τ (k)i )I[θi − τi(k) < 0]

(9)

where τ (k)i = ti+max1≤j≤σ(i)−1

{
σ(i)− j − ti−tσ−1(j)

f

}
is the arrival time of player i.
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