
Distributed Robust Principal Component Analysis

Wenda Chu
Institute for Interdisciplinary Information Sciences

Tsinghua University
chuwd19@mails.tsinghua.edu.cn

Abstract

We study the robust principal component analysis (RPCA) problem in a distributed
setting. The goal of RPCA is to find an underlying low-rank estimation for a raw
data matrix when the data matrix is subject to the corruption of gross sparse errors.
Previous studies have developed RPCA algorithms that provide stable solutions
with fast convergence. However, these algorithms are typically hard to scale and
cannot be implemented distributedly, due to the use of either SVD or large matrix
multiplication. In this paper, we propose the first distributed robust principal
analysis algorithm based on consensus factorization, dubbed DCF-PCA. We prove
the convergence of DCF-PCA and evaluate DCF-PCA on various problem settings.

1 Introduction

Principal robust analysis (PCA) has been widely used for dimension reduction in data science. It
extracts the top k significant components of a given matrix by computing the best low-rank approxi-
mation. However, it is well known that PCA is sensitive to noises and adversarial attacks. Robust
PCA (RPCA) aims at mitigating this drawback by separating the noise out explicitly. Specifically,
RPCA assumes that the observed matrix M ∈ Rm×n can be decomposed as M = L∗ + S∗ where
L∗ is a low-rank matrix and S∗ is a sparse matrix. The goal of RPCA is to recover the low-rank
matrix L∗ from the noisy data M , which is typically expressed as an optimization problem:

min
L,S

rank(L) + λ‖S‖0, s.t. M = L+ S. (1)

Unfortunately, this optimization problem is known to be NP-hard. Therefore, Equation (1) is often
reformulated to other optimization problems listed below.

• Convex relaxation of rank(·) to nuclear norm ‖ · ‖∗ and `0 norm to `1 norm.

min
L,S
‖L‖∗ + λ‖S‖1, s.t. M = L+ S. (2)

where the nuclear norm is defined as sum of singular values ‖L‖∗ =
∑min(m,n)
i=1 σi(L) and

‖S‖1 denotes the `1 norm of S as a vector: ‖S‖1 =
∑
ij |Sij |.

• A variant of RPCA considers recovering L from another noise with bounded Frobenius
norm. The corresponding optimization problem is formulated as

min
L,S
‖L‖∗ + λ‖S‖1 +

µ

2
‖L+ S −M‖2F . (3)

• Other works attempt to solve RPCA based on the low-rank matrix factorization that decom-
poses a low-rank matrix M as M = UV T (U ∈ Rm×r, V ∈ Rn×r). The rank function

ar
X

iv
:2

20
7.

11
66

9v
1

 [
cs

.D
C

]
 2

4
Ju

l 2
02

2

is resolved by an implicit constraint that rank(UV T) ≤ r. Feng el al. [1] proposed to
optimize a nonconvex problem:

min
U,V,S

1

2
‖UV T + S −M‖2F +

ρ

2
(‖U‖2F + ‖V ‖2F) + λ‖S‖1 (4)

which exploited the property of nuclear norm [2] so that its global minimum also minimizes
the objective of Equation (3):

‖L‖∗ = inf
U,V

{
1

2
‖U‖2F +

1

2
‖V ‖2F : UV T = L

}
(5)

The convex problems Equations (2) and (3) are well-posed and can be optimized using standard
convex optimization methods, e.g., SDP, PGM and ADMM. However, the existence of the nuclear
norm ‖ · ‖∗ makes it difficult for these algorithms to scale, since it cannot be calculated distributively.

In this paper, we present a distributed RPCA algorithm based on consensus factorization (DCF-PCA),
which solves the nonconvex problem Equation (4) distributedly. We formalize the distributed RPCA
problem and elaborate our DCF-PCA algorithm in Section 2; provides theoretical guarantees for
DCF-PCA in Section 3; and exhibits numerical results for DCF-PCA in Section 4.

2 Distributed Robust Principal Component Analysis

2.1 Problem Definition

We formalize the problem of distributed robustness principal component problem. Assume the data
M ∈ Rm×n are distributed over E remote clients. Each client i ∈ [E] only has access to some
columns of the matrix M .

M = [M1 M2 . . . ME] , where Mi ∈ Rm×ni and n =

E∑
i=1

ni. (6)

For clarity, we define L∗i and S∗i such that Mi = L∗i + S∗i for all i ∈ [E].

Limited Communication. As the communication cost over remote devices are typically high, we
give limited communication budget for the clients. Assuming m = O(n), naively broadcasting the
whole matrix needs transmitting a prohibitively large amount of data O(n2K).

Privacy Preserving. Privacy is considered as one of the most crucial issues in distributed learning.
In practice, some local data Mi may be privacy-sensitive and cannot be exposed to other clients. We
call a distributed scheme privacy-preserving for a set of sensitive clients I , if it recovers Li for i 6∈ I
but protects Mi for i ∈ I.

2.2 Distributed RPCA algorithm via consensus factorization

Here, we present a distributed consensus-factorization based RPCA algorithm DCF-PCA to solve
the problem defined in Section 2.1. We summarize our DCF-PCA algorithm in Algorithm 1. This
algorithm uses the nonconvex objective function Equation (4) to avoid using nuclear norm. We claim
that this objective function is perfectly separable for each client, making it suitable for the distributed
optimization.

We define local objective functions for each i ∈ [E]:

L̃i(Ui, Vi, Si) =
1

2
‖UiV Ti + Si −Mi‖2F +

ρ

2
‖Vi‖2F + λ‖Si‖1. (10)

The overall optimization goal Equation (4) can be written as a summation over each client:
L(U, V, S) =

∑E
i=1 L̃i(Ui, Vi, Si) + ρ

2‖U‖
2
F . As a result, Equation (4) can be decomposed into

multiple subproblems for each client to solve.

In order to enforce rank([L1 L2 . . . LE]) ≤ r, we require each client to reach a consensus on their
left matrix Ui, i.e., every matrix Ui must be identical. Therefore, we absorb the ρ

2‖U‖
2
F term into

each L̃i(Ui, Vi, Si), so the local objective under consensus is

Li(U, Vi, Si) = L̃i(U, Vi, Si) +
niρ

2n
‖U‖2F . (11)

2

Algorithm 1 Distributed RPCA algorithm via consensus factorization (DCF-PCA)
Input: E remote clients with submatrices {M1, . . . ,ME}.

Initialize matrixU (0) ∈ Rm×r. Each client i ∈ [E] randomly initializes Vi ∈ Rni×r, Si ∈ Rm×ni .
for t = 0 to T − 1 do

Server broadcasts U (t) to all clients.
for each client i ∈ [E] (concurrently) do

Set U (0)
i as U (t) and V (0)

i , S
(0)
i as V (K)

i , S
(K)
i from the last epoch.

for k = 0 to K − 1 do

(V
(k+1)
i , S

(k+1)
i)← arg min

V,S

1

2
‖U (k)V T + S −Mi‖2F +

ρ

2
‖V ‖2F + λ‖S‖1 (7)

U
(k+1)
i ← U (k) − η∇ULi(U (k), V

(K)
i , S

(k)
i) (8)

end for
Send back the updated U (t)

i = U
(K)
i to the server

end for
Server aggregates all Ui by average:

U (t+1) ←
∑E
i=1 U

(t)
i

E
(9)

end for
Li = U (T)V

(K)
i

T
and Si = S

(K)
i

return Recovered matrices {(Li, Si)}i∈Ipublic

The problem can thus be reformulated into finding a solution for

U∗ ∈ arg min
U

g(U) = arg min
U

E∑
i=1

gi(U) (12)

where

gi(U) = inf
Vi,Si

Li(U, Vi, Si)

= inf
Vi,Si

(
1

2
‖UV Ti + Si −Mi‖2F +

ρ

2
(‖Vi‖2F +

ni
n
‖U‖2F) + λ‖Si‖1

)
(13)

Equation (7) is a minimization problem of a convex function and the details of solving it is explained
later. Equation (8) updates the matrix U locally based on the surrogate optimal solution (V ∗i , S

∗
i). As

we will see in (Section 3.2 (Lemma 2), Equation (8) executes one step of local gradient descent for U
optimizing the local objective gi(U), when the solution (V ∗i , S

∗
i) is exact.

Finally, Equation (9) aggregates the outputs from remote clients by average. This scheme is known
as the FedAvg [3] algorithm in federated learning. When K = 1, Equation (9) is equivalent to
performing exactly one step of the global gradient descent following Equation (12). However, in
practise, the communication cost among remote clients is non-negligible. Setting K > 1 allows
clients to run local gradient descent for multiple steps, reducing the communication overheads caused
by synchronization. Moreover, it has been shown that choosing either a diminishing learning rate or a
carefully designed fixed learning rate η = O(1√

KT
) guarantees the convergence of FedAvg algorithm

[4, 5].

Details of solving Equation (7). Here we elaborate the details for optimizing the convex function
Equation (7). We claim that the solution for the convex local optimization problem

{V ∗i , S∗i } = arg min
Vi,Si

1

2
‖UV Ti + Si −Mi‖2F +

ρ

2
‖Vi‖2F + λ‖Si‖1 (14)

is unique. This is because (Vi, Si) is the solution for Equation (14) only if

(UTi Ui + ρI)V TV = UTi (Mi − Si)Vi (15)

Si = sign(Mi − UiV Ti) ·max(|Mi − UiV Ti | − λ, 0) (16)

3

Bringing Equation (16) back to Equation (14) yields:

V ∗i ∈ arg min
Vi∈Rni×r

[
ρ

2
‖Vi‖2F + min

Si∈Rm×ni

(
1

2
‖UV Ti + Si −Mi‖2F + λ‖Si‖1

)]
= arg min

Vi∈Rni×r

(ρ
2
‖Vi‖2F +Hλ(Mi − UV Ti)

)
. (17)

where Hλ(·) is the Huber loss, as defined in Appendix A. We denote the inner objective by h(Vi) =
ρ
2‖Vi‖

2
F +Hλ(Mi − UV Ti). We show by Lemma 1 in Section 3.2 that h(Vi) is ρ-strongly convex,

which means the solution for Equation (17) is unique. Moreover, Lemma 1 guarantees a linear
convergence for applying gradient descent on Vi to optimize h(Vi). As a result, the convex problem
in Equation (7) can be solved efficiently.

Problems with Unknown Exact Rank Attentive readers may notice that factorization-based algo-
rithms including our Algorithm 1 require knowing the exact rank r of the underlying low-rank matrix
L0. A more general problem formulation [6] considers anticipating an upper bound for the rank of
L0, i.e., rank(L0) ≤ p.

To solve this harder problem, DCF-PCA is slightly modified such that U ∈ Rm×p and Vi ∈ Rni×p.
As long as the incoherence condition [7] (as explained detailedly in Appendix A) is satisfied, the
global minimizer of Equation (4) is still guaranteed to be the exact recovery, because of the property
of nuclear norm: ‖L‖∗ = infU,V

1
2{‖U‖

2
F + ‖V ‖2F : UV T = L}. We also confirm this statement

numerically in Section 4.

Privacy Preserving. We claim that DCF-PCA also works for privacy critical scenarios. It learns
a left matrix U on consensus over all clients, but the private right matrices Vi are kept secret for
individuals. As suggested in Algorithm 1, DCF-PCA reveals Li only for public data i ∈ Ipublic and
keeps Mi secret for i ∈ Iprivate.

3 Theoretical Analysis

3.1 Preliminaries

We first define some terminologies before going to details of the convergence analyses.
Definition 1 (Smoothness). Consider a C1-continuous function f : Rd → R. We call the function
L-smooth if its derivative is L-Lipschitz, i.e.,

‖∇f(w1)−∇f(w2)‖2 ≤ L‖w1 − w2‖2. (18)

Definition 2 (Strongly convex). We call a C1-continuous function f : Rd → R µ-strongly convex,
if f(w)− µ

2 ‖w‖
2
2 is a convex function.

3.2 Convergence Analysis

In this section, we analyze the convergence rate of our distributed RPCA algorithm. The optimization
variables are assumed to be bounded during the whole training.
Assumption 1 (Bounded variables). During training, all the variables U, V, S are bounded, i.e.,

‖U‖F ≤ CU , ‖Vi‖F ≤ CV , ‖Si‖F ≤ CS , ‖Mi‖F ≤ CM ,∀i ∈ [E]. (19)

Based on Assumption 1, we first state several lemmas regarding the local optimization problems
Equations (13) and (17). The detailed proofs are omitted to Appendix B.1.
Lemma 1. The objective function h(Vi) is (ρ+ C2

U)-smooth and ρ-strongly convex.

Lemma 2. The objective function gi(U) is differentiable and for any U ,

∇Ugi(U) = ∇ULi(U, V ∗i , S∗i). (20)

Lemma 3. The local objective function gi(U) defined in Equation (13) is L-smooth, where

L = r + C2
V +

4CS + 12CV + 4CM
ρ

CV CU . (21)

4

Lemma 4. The local objective function gi(U) has bounded gradient

‖∇Ugi(U)‖F ≤ CU

√
mn2

i ρ
2

n2
+m2niλ2. (22)

With the help of Lemmas 3 and 4, we show that our DCF-PCA algorithm converges with a rate of
O(1√

KT
)

Theorem 1. If the learning rate η < 1
L , the average squared gradient of DCF-PCA converges by

1

T

T−1∑
t=0

‖∇Ug(U (t))‖2F ≤
2(g0 − g∗)
ηKT

+ 4η2K2C2
UL

2(mρ2 +m2nλ2) (23)

Proof Sketch. The proof of Theorem 1 is straight-forward, given the sufficient literature in distributed
learning of analyzing the FedAvg algorithm [4, 8]. We defer the detailed proof to Appendix B.2, in
which we leverage the conclusions from Lemmas 3 and 4 to prove the theorem.

Remark. We choose η = c√
KT

in Theorem 1, so that the norm of gradient converges to zero.

1

T

T−1∑
t=0

‖∇Ug(U (t))‖2F ≤
2(g0 − g∗)
c
√
KT

+
4c2KC2

UL
2(mρ2 +m2nλ2)

T
. (24)

Though Theorem 1 shows the convergence of the DCF-PCA algorithm, it does not implies any clues
to the stationary point reached.

3.3 Hyperparameter Analysis

As we have stated in Section 3.2, DCF-PCA optimizes over a nonconvex objective function and
may not converge to a global optimal solution. Here we first state a necessary condition for the
hyperparameters ρ, λ of finding the exact solution.

Theorem 2. DCF-PCA finds a global optimal solution only if

ρ2 ≤ λ2mn. (25)

Proof Sketch. We prove this theorem by showing when ρ2 > λ2mn, the gradient is always nonzero
unless U = 0. Therefore, ρ2 ≤ λ2mn is a necessary condition for finding the exact optimal solution.

3.4 Complexity Analysis

DCF-PCA exploits the superiority of distributed computation on large-scale problems by coordinating
remote devices through limited communications. In this section, we analyze the complexity of DCF-
PCA in two aspects: individual computation cost and the inter-client communication overhead.

Computation cost. In each local iteration, a remote client first finds the optimal solution for
Equation (13). The computation of gradient for h(Vi) takes O(mni+ rmni) = O(rmni) operations.
As stated in previous sections, the inner objective function h(Vi) converges linearly. Therefore, it
takes O

(
rmni log(1

ε)
)

time to converge to an ε-optimal solution. The client then executes one step
of gradient descent on Ui, in which the gradient can be computed in O(mr2 + nir

2) operations. In
conclusion, each local iteration takes O

(
mrmax(r, ni log(1

ε))
)

operations to compute. Moreover, if
the data are evenly distributed so that ni = O(nE), the time complexity of each communication round
for each client is

Tlocal = O

(
Kmrmax(r,

n

E
log

1

ε
)

)
. (26)

A central server is in charge of aggregating E updated left matrices {Ui}i∈[E] by average. The
amount of its work load is

Tserver = O (mr logE) . (27)

5

Communication cost. In each communication round, the server broadcasts a matrix of size m× r
to all clients, while each client sends an updated matrix of the same size back to the server at the end
of this round. Therefore, the total communication overhead in each round is

Tcomm = 2Emr. (28)

Regarding both computation and communication costs, the best configuration for the number of
clients is E = O(

√
n), so that the overall time cost for each round is

T0 = O(Kmrmax(r,
√
n log

1

ε
)). (29)

In common real world scenarios when numerous remote agents run a low-rank approximation
algorithm jointly, the local data volume ni is typically bounded. The individual computation cost and
communication overhead remain constant as the number of clients increases. Therefore, DCF-PCA is
scalable in terms of the data scale n and the number of clients E. It is particularly superior when m
is fixed and is much smaller than n. We claim that this case is common for distributed deep learning
as m corresponds the data dimension or the number of extracted features and n stands for the total
size of datasets.

4 Experimental Evaluation

In this section, we present the experimental results for DCF-PCA. The experimental setups and
evaluation metrics are first introduced in Section 4.1. We then compare DCF-PCA with other RPCA
algorithms on different problem scales and show xxx in Section 4.2. In Section 4.3 we conduct
experiments on different hyperparameter choices for DCF-PCA and perform ablation studies.

4.1 Experimental Setup

Problem Generation. The RPCA problems are generated by the following scheme for all exper-
iments. We first randomly sample a ground truth low rank matrix L∗ by L0 = U0V

T
0 , where

U0 ∈ Rm×r and V0 ∈ Rn×r are random Gaussian matrix whose entries are sampled from the stan-
dard Gaussian distribution N (0, 1). We then sample a sparse matrix S0 with smn random nonzero
entries, 0 < s < 1. Each entry of S0 is sampled from {−

√
mn, 0,

√
mn}.

Evaluation Metric. We evaluate the recovery of the low rank matrix by a relative error rate for L
and S.

err =
‖L− L0‖2F + ‖S − S0‖2F
‖L0‖2F + ‖S0‖2F

. (30)

Implementation. DCF-PCA uses a server-client distributed paradigm and should be implemented
distributedly in reality. However, we simulate the DCF-PCA algorithm on a single device in our ex-
periments instead for clarity. We run each local program sequentially and only allow communications
when the server synchronizes the programs. For comparison, we implement two common centralized
algorithms based on convex relaxation, APGM[9] and ALM[10].

4.2 Main Results

Exact rank recovery Figure 1 compares the performance of different algorithms in solving the
RPCA problems. We let m = n for all experiments and choose r = 0.05n, s = 0.05 for generating
the target matrices. We also report the performance for the centralized version of DCF-PCA as a
baseline, which is denoted as CF-PCA in Figure 1. Among all algorithms compared in Figure 1,
only DCF-PCA runs distributedly. As a result, DCF-PCA costs much less computation time than its
centralized counterpart CF-PCA. We note that different learning rates are used for DCF-PCA and
CF-PCA. The distributed DCF-PCA needs small learning rate for keeping consensus on the matrix U ,
while the single-thread CF-PCA makes use of a larger learning rate for efficiency. For all experiments,
we use decaying learning rate η = O(η0√

t
).

We also test the performance of DCF-PCA on matrices with different levels of sparsity and low rank.
In Figure 2 we report the relative error of the recovered matrices for different problem configurations,

6

Figure 1: Comparison on the convergence of different algorithms for the synthetic RPCA problems
of different scales (m = n = 500, 1000, 3000).

Figure 2: Relative error of the recovered matrices under different sparsity and low-rank levels
(m=n=500).

including s ∈ [0.05, 0.3] and r ∈ [0.05n, 0.2n]. We run DCF-PCA with less than 50 iterations with
K = 2 and initial learning rate η0 = 0.05. A distinctive limit occurs at r ≈ 0.15n and s ≈ 0.2. Any
target matrix with larger ground truth rank r and larger sparsity s than the limit cannot be recovered
correctly.

Upper-bound rank recovery

Here we present the evaluation results for DCF-PCA without anticipating the exact rank of L, but
only with an upper bound r ≤ p on the rank. Figure 3 compares the singular values of the recovered
matrix L(T) with the original low-rank matrix L0, when M = N = 200, r = 0.05n, s = 0.05 and
p = 0.1n. It shows that the recovered matrix with p = 2r successfully approximate the ground truth
matrix of rank r, as σr+1(L(T))/σr(L

(T)) is small. Quantitatively, we report the relative singular

value error: max |σi(L
(T))−σi(L0)|

σr(L0) in Table 1 for various problem scales.

4.3 Ablation Studies

Number of local iterations

We study the influence of different K values in DCF-PCA to the convergence rate. As K denotes the
number of local iterations per communication round, it reflects the level of asynchronization among
remote clients. When K = 1, the DCF-PCA algorithm is fully synchronized and U descends exactly
along the gradient of the global objective.

7

Figure 3: Comparison of the singular values between the recovered matrix and the ground truth
matrix.

Table 1: Relative singular value errors of DCF-PCA for different problem scales.

n r p max |σi(L
(T))−σi(L0)|

σr(L0)

200 10 20 0.0286
500 25 50 0.0326
1000 50 100 0.0398
5000 250 500 0.1127

Figure 4 shows the convergence of DCF-PCA with the same learning rate η = 0.01 and the number
of clients E = 10, but with different values of K. Our algorithm converges remarkably faster as K
increases, but also suffers from a slightly larger error floor at the same time.

5 Conclusions

In this work we formalize the problem of distributed robust principal analysis and present a
distributed consensus-factorization algorithm (DCF-PCA) that can run distributedly in remote
devices. Our algorithm does not require sharing the target matrices among remote clients and only
consumes limited communication. The nice properties of DCF-PCA help preserving private data of
clients and speeding up the computation of large-scale RPCA problems. DCF-PCA is particularly

Figure 4: Comparison on different numbers of local iterations K. It only takes 8 iterations for
DCF-PCA with K = 10 to converge; while K = 1 converges much slower.

8

effective for scenarios when n represents the total number of items in a large distributed dataset while
m represents the data dimension or the extracted features dimension in deep learning applications,
since n � m is usually observed in these cases. We show the convergence of our algorithm both
theoretically and numerically. DCF-PCA is also shown not sensitive to the choices of the number of
local iterations K and predefined rank upper bound p.

9

References
[1] Jiashi Feng, Huan Xu, and Shuicheng Yan. Online robust pca via stochastic optimization. In

NIPS, 2013.
[2] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of

linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, jan 2010.
[3] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.

Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti
Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pages
1273–1282. PMLR, 20–22 Apr 2017.

[4] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. In International Conference on Learning Representations, 2020.

[5] Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in
federated learning. CoRR, abs/1910.14425, 2019.

[6] Ningyu Sha, Lei Shi, and Ming Yan. Fast algorithms for robust principal component analysis
with an upper bound on the rank. Inverse Problems and Imaging, 15(1):109–128, 2021.

[7] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component
analysis? J. ACM, 58(3), jun 2011.

[8] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In AAAI, 2019.

[9] Zhouchen Lin, Arvind Ganesh, John Wright, Leqin Wu, Minming Chen, and Yi Ma. Fast
convex optimization algorithms for exact recovery of a corrupted low-rank matrix. 2009.

[10] Donald Goldfarb, Shiqian Ma, and Katya Scheinberg. Fast alternating linearization methods for
minimizing the sum of two convex functions. Mathematical Programming, 141:349–382, 2013.

[11] J. Frédéric Bonnans and Alexander Shapiro. Optimization problems with perturbations: A
guided tour. SIAM Review, 40(2):228–264, 1998.

10

A Omitted Preliminaries

A.1 Additional Lemmas

Danskin’s Theorem

Here we recall a finer version of the Danskin’s Theorem as stated in [11].

Lemma 5 (Theorem 4.1 [11]). Let f : Ra × Rb → R. Suppose f(x, ·) is differentiable and that
f(x, u),∇uf(x, u) are continuous. Let Φ ⊆ Ra be a compact subset. Then g(u) = minx∈Φ f(x, u)
is directionally differentiable. Moreover, when f(·, u) has a unique minimizer x∗ over Φ,

∇ug(u) = ∇uf(x, u). (31)

A.2 Huber Loss

The huber loss Hλ(·) is defined as

Hλ(x) =


−λx− λ2

2 , if x < −λ.
x2

2 , if − λ ≤ x ≤ λ
λx− λ2

2 , if x > λ.

(32)

One can quickly check that Hλ(x) is convex and differentiable. Furthermore, if X ∈ Rm×n is a
matrix, we define Hλ(X) =

∑m
i=1

∑n
j=1Hλ(Xij).

A.3 Incoherence condition

The general problem formulation for robust PCA is ill-posed. It assumes the target matrix M can
be decomposed to a low-rank matrix L and a sparse matrix S, but there might be multiple possible
solutions to it. Moreover, when L is also sparse or S has low rank, the recovery process is meaningless.
[7] presents the incoherence conditions for RPCA problems that guarantees L to be dense enough and
S to have larger enough rank, so that the recovery by optimizing convex relaxed objective Equation (2)
is exact. The incoherence condition is stated as

max
i
‖UT ei‖2 ≤

δr

m
,max

i
‖V T ei‖2 ≤

δr

n
(33)

‖UV T ‖∞ ≤
√

δr

mn
. (34)

where L = UΣV T is the singular value decomposition of L. Later, it is shown that under this
assumption, Equation (3) also recovers L with high probability.

B Proofs

B.1 Deferred Proofs of Lemmas

Lemma 1.

Proof. Note that the Huber loss function Hλ(·) is differentiable, so

∇Vi
h(Vi) = ρVi +H ′λ(Mi − UV Ti)TU. (35)

For any V1, V2 ∈ Rni×r, we have

‖∇h(V1)−∇h(V2)‖F = ‖ρ(V1 − V2) + U
(
H ′λ(Mi − UV T1)−H ′λ(Mi − UV ′2)

)
‖F (36)

≤ ρ‖V1 − V2‖F + ‖U‖F ‖H ′λ(Mi − UV T1)−H ′λ(Mi − UV T2)‖F (37)

≤ ρ‖V1 − V2‖F + ‖U‖F ‖UV T1 − UV T2 ‖F (38)

≤ (ρ+ C2
U)‖V1 − V2‖F . (39)

11

so h(·) is (ρ + C2
U)-smooth. On the other hand, f(Vi, Si) = 1

2‖UV
T
i + Si −Mi‖2F + λ‖Si‖1 is

convex, so
h(Vi) =

ρ

2
‖Vi‖2F + min

Si

f(Vi, Si) (40)

is ρ-strongly convex.

Lemma 2.

Proof. Recall that the local objective function is defined as

Li(U, Vi, Si) =
1

2
‖UV Ti + Si −Mi‖2F +

ρ

2
(
ni
n
‖U‖2F + ‖Vi‖2F) + λ‖Si‖1.

It is clear that L(·, Vi, Si) is differentiable. Moreover, both L and∇UL(U, Vi, Si) = ρni

n U+(UV Ti +
Si −M)Vi are continuous. We also know that for any fixed U , arg minVi,Si L(U, Vi, Si) is unique,
since h(Vi) is ρ-strongly convex. Therefore, according to Lemma 5, gi(U) = ∇U∇UL(U, Vi, Si).

Lemma 3.

Proof. Let V ∗i , S
∗
i = arg minVi,Si L(U, Vi, Si)

∇Ugi(U) = ∇U min
Vi,Si

L(U, Vi, Si) (41)

= ∇UL(U, V ∗i , S
∗
i) (42)

Note that L(U, V, S) is strongly convex in terms of V and S, we have

Li(U, V ′i , S′i)− Li(U, Vi, Si) ≥
ρ

2
‖V ′ − V ‖2F +

1

2
‖S′ − S‖2F . (43)

Similarly,

Li(U ′, Vi, Si)− Li(U ′, V ′i , S′i) ≥
ρ

2
‖V ′ − V ‖2F +

1

2
‖S′ − S‖2F . (44)

On the other hand,
f(Vi, Si) = L(U ′, Vi, Si)− L(U, Vi, Si) (45)

is Lipschitz in terms of Vi and Si. This is because

‖ ∂f
∂Vi
‖F = ‖Vi(U ′

T
U ′ − UTU)‖F ≤ CV ‖U ′

T
U ′ − UTU‖F ≤ 2CV CU‖U ′ − U‖F (46)

‖ ∂f
∂Si
‖F = ‖(U ′ − U)Vi‖F ≤ CV ‖U ′ − U‖F . (47)

Therefore,
f(V ′i , S

′
i)− f(Vi, Si) ≤ 2CV CU (‖V ′i − Vi‖F + ‖S′i − Si‖F). (48)

and
f(V ′i , S

′
i)− f(Vi, Si) ≥

ρ

2
(‖V ′ − V ‖2F + ‖S′ − S‖2F). (49)

Combine these two inequalities, we have

‖V ′i − Vi‖F + ‖S′i − Si‖F ≤
4CV CU

ρ
‖U ′ − U‖F . (50)

Now
‖∇gi(U ′)−∇gi(U)‖F ≤ ‖U ′i − U‖F ‖V ′i

T
V ′i +

ni
n
I‖F + ‖S′V ′i − SVi‖F

+ ‖Mi(V
′
i − Vi)‖F + ‖U‖F ‖V ′i

T
V ′i − V Ti Vi‖F (51)

≤ ‖U ′ − U‖F
(
rni
n

+ C2
V + 4

(CS + CV + ‖Mi‖F)CV CU
ρ

+
8C2

V CU
ρ

)
(52)

≤ ‖U ′ − U‖F
(
r + C2

V +
4CS + 12CV + 4CM

ρ
CV CU

)
(53)

12

Lemma 4.

Proof. The gradient of the local objective gi(U) is

∇Ugi(U) = ∇UL(U, V ∗i , S
∗
i) (54)

= (UV ∗i
T + S∗i −Mi)V

∗
i +

ni
n
U. (55)

Recall that

(UTU + ρI)V ∗i
T = UT (Mi − S∗i) (56)

S∗i = sign(Mi − UV ∗i
T) ·max(|Mi − UV ∗i

T | − λ, 0) (57)

Let Λ = Mi − UV ∗i
T − S∗i , so ‖Λ‖∞ ≤ λ. Then Equation (56) can be rewritten as

ρV ∗i = ΛTU (58)

Bringing this back to Equation (55) yields

∇Ugi(U) = −ΛV ∗i +
ni
n
U = (

ni
n
Im − ΛΛT)U (59)

Since ‖ΛΛT ‖2F ≤ m2nλ2,

‖∇Ugi(U)‖F ≤
√

(
n2
i

n2
mρ2 +m2niλ2)‖U‖F ≤ CU

√
n2
imρ

2

n2
+m2niλ2. (60)

B.2 Proof for Theorem 1

Proof. We first recall a theorem proved in [8]:

Lemma 6 (Yu et al. [8] Theorem 1). Suppose each local objective function is L-smooth and has
bounded gradient norm ‖∇fi(w)‖2 ≤ G. If each local agent runs local SGD and synchronizes their
model weights every K iterations, the FedAvg algorithm converges with

1

T

T∑
i=1

E[‖∇f(w(t))‖2] ≤ 2

ηT
(f(w(0) − f∗)) + 4η2K2G2L2 +

L

N
ησ. (61)

where the learning rate η ≤ 1
L and σ is the variance of each SGD update.

Notice that our DCF-PCA algorithm has no variance in each local update. We combine Lemmas 3, 4
and 6 by G ≤ CU

√
mρ2 +m2nλ2 and derive the result of Theorem 1.

13

	1 Introduction
	2 Distributed Robust Principal Component Analysis
	2.1 Problem Definition
	2.2 Distributed RPCA algorithm via consensus factorization

	3 Theoretical Analysis
	3.1 Preliminaries
	3.2 Convergence Analysis
	3.3 Hyperparameter Analysis
	3.4 Complexity Analysis

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Main Results
	4.3 Ablation Studies

	5 Conclusions
	A Omitted Preliminaries
	A.1 Additional Lemmas
	A.2 Huber Loss
	A.3 Incoherence condition

	B Proofs
	B.1 Deferred Proofs of Lemmas
	B.2 Proof for converge1

