
Differential Privacy: A survey

Jiaxuan Gao
gaojx19@mails.tsinghua.edu.cn

Ruoyu Yan
ry-yan19@mails.tsinghua.edu.cn

Wenda Chu
chuwd19@mails.tsinghua.edu.cn

June 3, 2021

1 Introduction

Over the past several decades, immense amount of data were collected, which enables a variety of new
applications and services. Some of these applications investigate user behaviors and gain economic profits
from it (such as recommendation algorithms); while some of them get access to crucial information such as
health condition or medical data. As a result, it has been a growing concern to guard the privacy of users
and protect sensitive data from exposure.

Among various approaches, Differential Privacy is considered as one of the most promising privacy
preservation techniques. An elegant definition of privacy is proposed by [6] and several basic mechanisms
are introduced as building blocks toward privacy ([6, 10]). In this report, we make a concise introduction to
these techniques and briefly discuss several applications of differential privacy.

1.1 Basic Definitions

Model setup
A complete model of differential privacy consists of:

• A database X ∈ Xn.

• An adversary may ask queries: f : Xn → Y .

• The database is maintained by a trusted curator M : Xn → Y . It is supposed to respond the queries
with data protected.

Definition 1.1 (ϵ, δ-Differential Private). An algorithm M is ϵ, δ-Differential Private if: ∀X ,X ′ ∈ Xn such
that ∥X − X ′∥0 ≤ 1, and ∀T ⊆ Y

Pr[M(X) ∈ T] ≤ eϵ Pr[M(X ′) ∈ T] + δ (1)

M is called ϵ-pure differential private if δ = 0. If δ ̸= 0, M is approximate differential private, in the
sense that it is guaranteed to be differential private with probability 1− δ.

This definition captures the concept of privacy by examining two neighbouring database X ,X ′ with
some distance metric d(X ,X ′) ≤ 1. Intuitively, differential privacy press demands on algorithm M to be ”
continuous” in the whole Xn space. We shall also point out that the distance of two database are measured
by Hamming distance (ℓ0 norm) in the above definition, so two neighbouring database are only different on
one entry. However, it is shown d(X ,X ′) could be measured using any other distance metric according to
[3].

1

Differential Privacy: A survey

Definition 1.2 (Sensitivity). Consider a function f : Xn → Rk. Its ℓp-sensitivity is defined as:

∆(f)
p = max

X ,X ′:∥X−X ′∥0≤1
∥f(X)− f(X ′)∥p. (2)

Definition 2 takes a maximum for X ,X ′ spanned on the whole Xn space. It may facilitate analytic
calculation for finding an upper bound, but in practice, the curator is only required to protect a single
database X . This provides incentive to develop definition of local sensitivity, which will be discussed in later
sections.

1.2 Properties of Differential Privacy

Theorem 1.3 (Immunity to post-processing). If M : Xn → Y is (ϵ, δ)-differential private, then for any
function h : Y → Y ′, h ◦M : Xn → Y ′ is (ϵ, δ)-differential private as well.
Proof.It suffices to prove for deterministic h. If not, h can be decomposed into convex combination of
deterministic functions. Moreover, by definition, a convex combination of DP mechanisms is still DP.

The proof for deterministic h is straightforward. Fix X ,X ′ with ∥X −X ′∥0 ≤ 1. Then for any T ⊆ Y ′,
define S = {y ∈ Y : h(y) ∈ T}.

Pr[h(M(X)) ∈ T] = Pr[M(X) ∈ S] ≤ eϵ · Pr[M(X ′) ∈ S] + δ = eϵ · Pr[h(M(X ′)) ∈ S] + δ. (3)

This property is crucial for the idea of differential privacy to make sense; because an adversary is
capable for doing any post-processing after querying f(X).

Theorem 1.4 (Basic Composition). Suppose algorithm Mi is (ϵi, δi)-DP, then a sequence of algorithms
M = (M1,M2, . . . ,Mk) is (ϵ, δ)-DP with ϵ =

∑k
i=1 ϵi and δ =

∑k
i=1 δi.

This is in fact not a tight bound for DP composition. An advanced version of composition bound claims
(ϵ, δ)-DP for composed algorithms with:

ϵ̃ = ϵ
√
2k log(1/δ′) + kϵ

eϵ − 1

eϵ + 1
, δ̃ = kδ + δ′. (4)

The composition property of differential privacy captures the behavior of an adversary who asks for
data in a sequential manner. DP properties are guaranteed to be preserved under polynomial number of
sequential queries.

2 Basic Mechanisms

In this section, we briefly review the basic mechanisms that serve as building blocks of differential
privacy. The main idea of these mechanisms is to apply minimal noise of the output of f(X), meeting the
demand of DP with relatively small accuracy loss.
Laplacian Mechanism

First define Laplacian density distribution Lap(b) = 1
2be

− |x|
b . Given any function f : Xn → Rk with

ℓ1-sensitivity is ∆
(f)
1 , the Laplacian Mechanism gives:

Mϵ(x) = f(x) + (Y1, Y2, . . . , Yk) (5)

where Yi is i.i.d. variable drawn from Laplacian distribution: Yi ∼ Lap(
∆

(f)
1

ϵ).

2 / 7

Differential Privacy: A survey

Theorem 2.1. Laplacian Mechanism achieves (ϵ, 0)-differential privacy with error bounded by O(
∆

(f)
1

ϵ).

Gaussian Mechanism
Gaussian mechanism is applied to any function f : Xn → Rk with bounded ℓ2-sensitivity ∆

(f)
2 . The

same noise perturbation function as equation 5 is used for Gaussian mechanism. The only difference is that
Yi is i.i.d. sampled from a Gaussian distribution:

Yi ∼ N (0, 2 ln(1.25/δ)∆2
2/ϵ) (6)

Gaussian mechanism guarantees (ϵ, δ)-DP with requirement on ℓ2 sensitivity of the query function. In
high dimensional queries(k ≫ 1), ℓ2 norm is

√
k times smaller than ℓ1 norm, in which case the superiority

of Gaussian mechanism emerges.

Theorem 2.2. Gaussian mechanism is (ϵ, δ)-DP.

Exponential Mechanism
While Laplace mechanism and Gaussian mechanism are applied in the case of real-valued functions,

exponential mechanism is devised for the case of discrete-valued functions.
The model setting is as following. We have a dataset of n individuals X ∈ Xn, a finite set of objects

H and a score function s : Xn ×H → R for any dataset X and an object h ∈ H. The goal is to output an
object h ∈ H such that s(X , h) is as high as possible while preserving privacy.

Definition 2.3 (Sensitivity of a score function). For a score function s(X , h), its sensitivity is defined as

∆s = max
h∈H

max
X ,X ′

|s(X , h)− s(X ′, h)| (7)

The exponential mechanism ME on inputs X ,H, s selects and outputs some object h ∈ H, where the
probability of a particular h is selected is proportional to exp

(
εs(X ,h)

2∆

)
. The probability is similar to that in

Laplace mechanism and it can actually be shown that exponential mechanism is a discrete case of Laplace
mechanism under certain circumstance.

Theorem 2.4. Exponential mechanism is ϵ-DP.

Theorem 2.5. Let OPT (X) = maxh∈H s(X , h) be the highest score with respect to dataset X . For a
dataset X , let H∗ = {h ∈ H : s(X , h) = OPT (X)} be the set of best objects. Then

Pr

[
s(ME(X) ≤ OPT (X)− 2∆

ε

(
ln
(
|H|
|H∗|

)
+ t

)]
≤ exp(−t) (8)

This theorem implies that exponential mechanism would output an object with error of roughly O
(

∆ ln |H|
ε

)
.

Exponential mechanism could be applied in the scenario of selling digital goods, as shown in Section 10.1 of
[7], and also in private PAC learning.

3 Common Techniques on Databases

In this part, we briefly introduce two common techniques in differential privacy, private multiplicative
weights algorithm and sparse vector technique. While basic mechanisms could serve as building blocks in
DP applications, they are not optimal in the sense that many intrinsic properties of problems are omitted,
for example correlation between queries, leading to suboptimal privacy or accuracy guarantee.

3 / 7

Differential Privacy: A survey

3.1 Private Multiplicative Weights

Private multiplicative weights algorithm [8] aims to improve performance in the setting of k linear
queries. Linear queries are of the form q(X) = 1

n

∑
xi∈X q(xi), which are common in nowadays databases. If

we directly apply Laplace mechanism or Gaussian mechanism on the k queries, the sample complexity would
be n = O

(
|Q| log |Q|

αε

)
and n = O

(√
|Q| log |Q| log(1/δ)

αε

)
respectively, which are both polynomial in |Q|.

Private multiplicative weights works in an offline manner, that is, all k linear queries are given in
advance as a set Q. Build on success of multiplicative weights algorithm [1] in field of no-regret learning,

private multiplicative weights could achieve sample complexity of n = Õ

(
log |Q|

√
log |X | log(1/δ)
α2ε

)
, which is

only logarithm of |Q|. By regarding regret as error and distributions over experts as ”fake” datasets, we
could generate a ”fake” dataset X̂ that answers all queries in Q with error bounded by α simultaneously. To
make it differential private, we apply exponential mechanism and Laplace mechanism at every step querying
the dataset.

Notice that instead of adding perturbation on the answers trivially, in private multiplicative weights
we generate a synthetic dataset X̂ and then answer all queries in Q according to X̂ . It’s a typical and nice
application of differential privacy.

3.2 Sparse Vector Technique

Sparse vector technique [7] works in the scenario of identifying which queries are large in a online manner.
This is a easier question than directly outputting the answers. Again if we directly apply Laplace or Gaussian
mechanism, the sample complexity are roughly O(k/ε) or O(

√
k/ε). With sparse vector technique, we could

solve it with roughly n = O(log k/ε) or n = O(c log k/ε) if the goal is to identify the first c large ones.
Idea of sparse vector is rather simple. We first set a threshold T and add some Laplace noise. With

stream of queries incoming, first compute the answer with Laplace noise and then compare the answer to
the threshold T . If T is larger, continue to the next query. Otherwise, identify it as a large one. If the goal
is to identify the first c large ones, just repeat the process for c times.

4 Private Machine learning

Recent years, machine learning algorithms have achieved great success in many applications. These
algorithms aim to extract information and learn the distribution from data, so they inherently depends on
the massive use of data. Designing machine learning algorithm with dataset protected therefore becomes an
intriguing topic.

4.1 Differential Private ERM

A typical setup for machine learning is to minimize a loss function L(f,D), where D stands for the real
world data distribution of the problem we want to solve. Empirical risk minimization (ERM) is a well known
and extensively explored method for optimizing the loss function. ERM trains the learner to minimize the
loss function on a sampled dataset by gradient descent or any other techniques. It is believed that ERM
would qualifies the learner for real world tasks as long as the learner generalizes well and the training dataset
is somewhat representative.

Several approaches have been explored for privatizing ERM algorithm, including output perturbation[4]
and gradient perturbation[2]. Yet another interesting idea is to perturb on loss functions. However, the

4 / 7

Differential Privacy: A survey

works on this perturbing method either requires exact minimization on training data[4] or convexity of loss
functions[9].
Output Perturbation

We denote the loss function on training dataset as L(f(θ),D) =
∑n

i=1 ℓ(fθ(xi), yi), where fθ is the
hypothesis function with parameter θ.

The brief idea of output perturbation is to add noise directly to the learnt parameters θ. Hence,
a natural requirement to bound the sensitivity of L(fθ,D). A prevalent method is regularization that
penalizes parameters for growing too big. Chaudhuri et al. [4] proved the following statement (we use a
slightly different definition of loss function from the original paper):

Theorem 4.1. For a loss function with a differential and 1-strongly convex regularization function N(θ),

J (fθ,D) =
n∑

i=1

ℓ(fθ(xi), yi) + λN(θ), (9)

and if ℓ is convex, 1-Lipschitz, then the ℓ2 sensitivity of J is at most 2n
λ .

A Gaussian noise N (0, O(n
2 log(1/δ)
λ2ϵ2)) is thus sufficient for (ϵ, δ) differential privacy.

Gradient Perturbation
Gradient perturbation is a current prevailing approach, in which a noisy form of gradient descent is ap-

plied. The results of this kind of privatization are based on previous analysis on projected SGD convergence.
According to [12], for convex objective function f and projected SGD algorithm θt+1 = PC(θt − η(t)Gt(θ)),
where E(Gt(θt)) = ∇f(θt) and E(∥Gt(θt)∥22) ≤ G2, we can achieve

E[f(θT)− f(θ∗)] = O

(
∥C∥2G logT√

T

)
,∀θ0 ∈ C (10)

Based on this theorem, Bassily et al. proposed a private SGD algorithm. Assuming loss function ℓ to
be L-Lipschitz, it basically iterates the following procedure for n2 times:

θ ← PC(θ − η(t) · (n · ∇ℓ(fθ(xi), yi)) + bt), where bt ∼ N (0, σ2 · Id). (11)

where the noise parameter is chosen as σ2 = 32L2n2 log(n/δ)log(1/δ)
ϵ2 . (d is the dimension of parameter space.)

Since E(∥Gt∥22) can be bounded by n2L2 + dσ2, the accuracy of this algorithm is still guaranteed by:

E[L(fθT ,D)− L(f∗,D)] = Õ

(
∥C∥2

√
n2L2 + dσ2

√
T

)
= Õ

(
∥C∥2L

√
d log(1/δ)
ϵ

)
(12)

Theorem 4.2 (DP for private SGD). The above private SGD algorithm achieves (ϵ, δ)-DP with n2 iterations.

The proof of this theorem is straightforward by combining the Gaussian mechanism and the advanced
composition of DP.

5 Different Definition of Sensitivity

As we have stated in section 1.1, the original definition of DP considers the worst case of the protected
database X , which may be an overkill since our ultimate goal is only to protect a specific database. This
encourages the several looser definition of sensitivity, such as local sensitivity and smoothed sensitivity.

5 / 7

Differential Privacy: A survey

Definition 5.1 (Local Sensitivity). Consider a function f : Xn → Rk. Its ℓp-local sensitivity is defined as:

∆
(f)
LS(X) = max

X ′:∥X−X ′∥0≤1
∥f(X)− f(X ′)∥p, (13)

However, this definition is highly ill-conditioned. For example, let f be a query that asks for the distance
of the nearest two points in a database; and A = (0, 0, 0) is a database with three entries. It is easy to check
that ∆(f)

LS(A) = 0. However, as a neighbouring database, A′ = (0, 0, N) yields a much higher local sensitivity
∆

(f)
LS(A

′) = N . As such, bounding the local sensitivity on only one database instance may not be secure,
since a small number of modifications may perturb its sensitivity a lot. Instead, it is necessary to bound the
sensitivity of all databases close to X . Proposal-test-release algorithm [5] is proposed to address this issue.
Proposal-Test-Release Algorithm

Let f be a query function from the adversary, Proposal-Test-Release algorithm attempts to find a proper
upper bound for local sensitivity of f . Then it outputs f(X) with noise, the magnitude of which is decided
by the calculated upper bound.

Specifically, it first proposes such a bound β; and computes the Hamming distance γ from X to the
nearest database X ′, such that ∆LS(X ′) ≥ β.

Compute γ̃ = γ+Lap(1ϵ). The reason of taking noise on γ is that γ may reveal some information about
the database X as well. A trick here is that the measurement γ on Hamming distance is a function with
sensitivity 1. Finally, test where γ̃ is greater than ln(1/δ)/ϵ. If no, β is too small to be a proper upper
bound, so the algorithm returns ⊥.

Otherwise, outputs f(X) + Lap(β/ϵ). This is again (ϵ, 0)-differential private by Laplacian mechanism.
As a combination, it is proved that:

Theorem 5.2. The proposal-test-release algorithm is (2ϵ, δ)-DP.

Though the privacy guarantee of the above theorem is promising, its running time is not properly guar-
anteed. We shall point out that the step of finding γ is not computationally efficient. However, some common
queries enjoy great properties of such efficiency. The task of calculating the histogram of a database X ∈ Xn

shows the strength of this algorithm. For comparison, a pure ϵ-DP scheme attains O(log |X|/ϵ) accuracy
on histogram queries. However, by testing local sensitivity, an (ϵ, δ)-DP algorithm achieves O(log(1/δ)/ϵ)
accuracy, which cancels the dependency on domain size |X|.

Yet another similar variation of sensitivity (Smoothed sensitivity) is defined by Nissim et al in [11].
Intuitively, this definition suggests putting more attention on databases closer to X with an exponential
discount. In practise, however, it is often intractable for computation.

∆
(f)
SS (X) = max

X ′∈Xn

(
∆

(f)
LS(X

′)e−ϵd(X ,X ′)
)

(14)

6 Summary

As we shown in previous sections, differential privacy has been proposed as a mathematical tool to
protect individual’s private information while preserving possibility to do analysis in large scale datasets. In
this survey, we briefly talk about several basic techniques that serve as building blocks in differential privacy
applications, for example, the Laplace mechanism. The privacy is guaranteed by the property of immunity
to post-processing. With basic or advanced composition, we could analyze more complicated algorithms. In
DP’s world, the goal is to generate less statics error within certain privacy guarantee so designing different
algorithms for special kinds of problems is important. In modern world, several Internet companies like google
have already started to explore methods to prevent privacy. As far as we know, in practice, differential privacy
is now deployed in some database applications. The queries in databases are usually simple. For example,

6 / 7

Differential Privacy: A survey

google has an open-source repository that contains libraries to generate ε- and (ε, δ)-differentially private
statistics over datasets (see https://github.com/google/differential-privacy). However, for more
complicated applications like machine learning or deep neural network, it’s not practical to deploy differential
privacy now. First, as we have shown in the part of machine learning, the model setting introduces too
strong restrictions, which are also common in nowadays analysis. Second, to successfully deploy differential
privacy in a real-world application, differential privacy experts are always needed, which further prevents
the deployment of differential privacy.

References
[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-

algorithm and applications. Theory of Computing, 8(6):121–164, 2012.

[2] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 464–473, 2014.

[3] Konstantinos Chatzikokolakis, Miguel E. Andrés, Nicolás Emilio Bordenabe, and Catuscia Palamidessi.
Broadening the scope of differential privacy using metrics. In Emiliano De Cristofaro and Matthew
Wright, editors, Privacy Enhancing Technologies, pages 82–102, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[4] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical risk
minimization, 2011.

[5] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics, 2009.

[6] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Shai Halevi and Tal Rabin, editors, heory of Cryptography, pages 265–284,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[7] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3–4):211–407, August 2014.

[8] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving data
analysis. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 61–70,
2010.

[9] Roger Iyengar, Joseph P. Near, Dawn Song, Om Thakkar, Abhradeep Thakurta, and Lun Wang. To-
wards practical differentially private convex optimization. In 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 299–316. IEEE, 2019.

[10] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS). IEEE, October 2007.

[11] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. A.: Smooth sensitivity and sampling in private
data analysis. In In: Proc. of STOC, ACM (2007) 75–84.

[12] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes, 2012.

7 / 7

https://github.com/google/differential-privacy

	Introduction
	Basic Definitions
	Properties of Differential Privacy

	Basic Mechanisms
	Common Techniques on Databases
	Private Multiplicative Weights
	Sparse Vector Technique

	Private Machine learning
	Differential Private ERM

	Different Definition of Sensitivity
	Summary

