

TPC: Transformation-Specific Smoothing for Point Cloud Models

Wenda Chu¹, Linyi Li², Bo Li² (presenter)

¹ IIIS, Tsinghua University

² University of Illinois Urbana-Champaign

[ILLINOIS

Robustness Vulnerabilities

- Point cloud models widely used in autonomous driving
- Autonomous driving has shown vulnerable to adversarial perturbations
 - Not only ℓ_p -bounded perturbations, but also semantic attacks
- We propose TPC framework that boosts certified robustness of large point cloud models against various semantic attacks

Simulation shows a rotated car cannot be detected.

Green: car detected Red: car not detected

Background: Randomized Smoothing

- Idea: add random noise to a base classifier $h: \mathcal{X} \to \mathcal{Y}$
 - The smoothed classifier has easy-to-compute robustness certification

$$g(x) := rg\max_{y \in \mathcal{Y}} \mathbb{E}_\epsilon \Pr[h(x + \epsilon) = y], \epsilon \sim \mathcal{N}(0, \sigma^2 I).$$

Image source: [Cohen et al. 2019]

Threat Model

• Adversary: applies parameterized transformations to point clouds

Point Parameter cloud space

- Transformation $\phi: \mathcal{X} \times \mathcal{Z} \to \mathcal{X}$
- Including: rotation, twist, shear, taper, L_p norm noise, etc.

Transformation Taxonomy

Transformations $\phi : \mathcal{X} \times \mathcal{Z} \to \mathcal{X}$ fall into three categories:

Transformation Taxonomy

Transformations $\phi : \mathcal{X} \times \mathcal{Z} \to \mathcal{X}$ nto three categories:

Certification Strategy

- Additive $\phi(\phi(x, \alpha), \beta) = \phi(x, \alpha + \beta)$ $\|\alpha\|_2 \le \frac{\sigma}{2} \Big(\Phi^{-1}(p_A) - \Phi^{-1}(p_B) \Big), \alpha \in \mathcal{Z}.$
- Composable

- e.g., Linear transformations, $\phi(x, \alpha) = (I + \alpha)x, \quad \alpha \in \mathbb{R}^{3 \times 3}$ $\|\alpha\|_F \leq R, \quad R = \frac{\sigma\left(\Phi^{-1}(\tilde{p}_A) - \Phi^{-1}(1 - \tilde{p}_A)\right)}{2 + \sigma\left(\Phi^{-1}(\tilde{p}_A) - \Phi^{-1}(1 - \tilde{p}_A)\right)}.$

Certification Strategy

- Indirectly composable
 - Draw N samples $\{\alpha_i\}$ from the parameter space
 - Check that $p_A^{(i)} \ge p_B^{(i)}$ for each transformed point cloud $\phi(x, \alpha_i)$

$$\begin{array}{ll} - \text{ Interpolation error} & \mathcal{M}_\mathcal{Z} := \max_{\alpha \in \mathcal{Z}} \min_{1 \leq i \leq N} \mathcal{M}(\alpha, \alpha_i) \\ & = \max_{\alpha \in \mathcal{Z}} \min_{1 \leq i \leq N} \| \phi(x, \alpha) - \phi(x, \alpha_i) \|_2 \end{array}$$

- Guaranteed to be robust if

$$\mathcal{M}_\mathcal{Z} \leq rac{\sigma}{2} \min_{1 \leq i \leq N} \Bigl(\Phi^{-1}(p_A^{(i)}) - \Phi^{-1}(p_B^{(i)}) \Bigr)$$

Empirical Results

Dataset: ModelNet40 [Wu et al. 2015] Architecture: PointNet [Qi et al. 2017] Baseline: DeepG3D [Lorenz et al. 2021]

(a) $\theta = \pm$	3° compared	with DeepG3D	(Lorenz et al.,	2021)
· /	1	1	· · · · · · · · · · · · · · · · · · ·	

Points	16	32	64	128	256	512	1024
TPC	83.2	83.8	86.6	87.4	89.4	89.8	90.5 32.3
DeepG3D	75.4	78.4	79.1	69.4	57.5	42.8	

(U) Continued accuracy of $1 \le 0$ under $U = \pm 100$	(b)	Certified	accuracy	of TPC	under θ	$=\pm 180^{\circ}$
---	-----	-----------	----------	--------	----------------	--------------------

Points	16	32	64	128	256	512	1024
TPC	73.6	79.3	81.3	81.8	83.0	84.6	83.8

Transformation	Attack radius	Certified Accuracy ($\%$)			
Transformation	Attack radius	TPC	DeepG3D		
	2°	81.4	61.6		
ZYX-rotation	5°	69.2	49.6		
	5°	78.5	-		
General rotation	10°	69.2	-		
	15°	55.5	-		
	20°	84.2	81.8		
Z-rotation	60°	83.8	81.0		
	180°	81.3	-		
	0.03	83.4	59.8		
Z-shear	0.1	82.2	-		
	0.2	77.7	-		
	20°	83.8	20.3		
Z-twist	60°	80.1	-		
	180°	64.3	-		
	0.1	78.1	69.0		
Z-taper	0.2	76.5	23.9		
	0.5	66.0	-		
T :	0.1	74.0	-		
Linear	0.2	59.9	-		
	20°, 1°	78.9	13.8		
Z-twist \circ	$20^{\circ}, 5^{\circ}$	78.5	-		
Z-rotation	$50^{\circ}, 5^{\circ}$	76.9	-		
Z-taper o	0.1, 1°	76.1	58.2		
Z-rotation	0.2, 1°	72.9	17.5		
Z-twist \circ Z-taper	$10^{\circ}, 0.1, 1^{\circ}$	68.8	17.5		
\circ Z-rotation	$20^{\circ}, 0.2, 1^{\circ}$	63.1	4.6	ç	
\circ Z-rotation	$20^{\circ}, 0.2, 1^{\circ}$	63.1	4.6		

Summary

TPC

- Robustness certification for randomized smoothing
- Significantly tighter certification against semantic perturbations
- For large-scale point cloud models
- Core idea: transformation-specific smoothing

Paper: <u>https://arxiv.org/abs/2201.12733</u> Code & Model & Data: <u>github.com/Qianhewu/Point-Cloud-Smoothing</u> Poster: Hall E 211 (6:30 – 8:30 PM Today)

- Theoretically tight certification against ℓ_p perturbations
- For arbitrary classifiers
- Core idea: double sampling

Paper: arxiv.org/abs/2206.07912 Code & Model & Data: github.com/llylly/DSRS Poster: Hall E 213 (6:30 – 8:30 PM Today)