Multi-omics Integration via Graph Learning

Computational Biology

Wenda Chu, Minsi Lu, Botian Wang, Sihang Zeng, Shiyu Zhao

Content

- 1. Introduction
- 2. Improvement: Graph Construction
- 3. Improvement: Principal Neighbor Aggregation
- 4. Experiment result & Case study

Introduction

Multi-omics Integration

Embed single-cell data from different sequencing methods (different omics) into a same latent space. In this project, we use scRNA-seq and scATAC-seq data.

Data

- Dataset: Chen-2019
- Sequencing method: SNARE-seq
- Cell: mouse cerebral cortex
- Data format:
 - scRNA-seq: (9190, 28930)
 - o scATAC-seq: (9190, 241757)

chrom	chromStart	chromEnd
chr7	45567793	45575327
chr11	51685385	51688874
chr2	26445695	26459390
chr11	120348677	120351190
chr11	23564960	23633639
	chrom chr7 chr11 chr2 chr11 chr11	chrom chromStart chr7 45567793 chr11 51685385 chr2 26445695 chr11 120348677 chr11 23564960

	chrom	chromStart	chromEnd
peaks			
chr1:3005833-3005982	chr1	3005833	3005982
chr1:3094772-3095489	chr1	3094772	3095489
chr1:3119556-3120739	chr1	3119556	3120739
chr1:3121334-3121696	chr1	3121334	3121696
chr1:3134637-3135032	chr1	3134637	3135032

Chen, S., Lake, B.B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. *Nat Biotechnol* 37, 1452–1457 (2019). https://doi.org/10.1038/s41587-019-0290-0

Cao, ZJ., Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. *Nat Biotechnol* 40, 1458–1466 (2022). https://doi.org/10.1038/s41587-022-01284-4

Improvement: Graph Construction

chr2:22621978-22622731 weight: 1.0 chr2:22638398-22638677 weight: 1.0 chr2:22674478-22674825 weight: 1.0 Gad2 weight: 1.0

Simply using genomic overlap, regulatory relationships limited to promoters and gene regions

Our graph construction

1.0 0.5 3.0Kb -3.0 TSS 2.5 2.0 1.5 1.0 0.5 -3.0 TSS 3.0Kb

gene distance (bp)

Connect atac peaks to RNA in the extended region and use a power-law function to decay the weights

More information, like cis-regulatory interactions : CREs are often but not always upstream of the transcription site. CREs are non-coding sequences, but are often co-accessible with genes. We can infer cellular TF-gene interactions by TF-motif localization

Simulated chromatin contact probability;

Genes are generally in an open state near the transcription start site (TSS).

chr2:22621978-22622731 weight: 1.0 chr2:22638398-22638677 weight: 1.0 chr2:22674478-22674825 weight: 1.0 chr2:22702602-22702837 weight: 0.18153018383277017 chr2:22706374-22706918 weight: 0.1419794688239361 chr2:22721858-22722265 weight: 0.0800516008915812 chr2:22723970-22724581 weight: 0.0759383453268991 chr2:22747089-22747354 weight: 0.050050036153407765 chr2:22758660-22758887 weight: 0.043290732893392636 chr2:22759042-22759269 weight: 0.04310315612950408 chr2:22760411-22760808 weight: 0.042446203628414045 chr2:22765033-22765574 weight: 0.04039034907576054 chr2:22774203-22774646 weight: 0.036924270237414264 chr2:22780962-22781291 weight: 0.0347783312880787 chr2:22785130-22785622 weight: 0.03359313257336422 chr2:22792485-22792777 weight: 0.03171511241245008 chr2:22814196-22814358 weight: 0.027355373222849172 Gad2 weight: 1.0

Improvement: Principal Neighbor Aggregator

Indistinguishability in single aggregator

These two graphs are indistinguishable!

Indistinguishability in single aggregator

Failure cases for all single aggregators:

Combined aggregators: Principal Neighborhood Aggregator

Result & Case Study

Results - Cell Integration Metrics

Metric Type	Mertics	GLUE	GLUE+PNA	GLUE+PNA+Decay
Biological Conservation Metrics	Average Silhouette Width	0.5772	0.5688	<u>0.5707</u>
	Mean Average Precision	0.7809	0.7463	<u>0.7529</u>
Omics Mixing Metrics	Graph Connectivity	0.8502	0.8377	<u>0.8423</u>
	Average Silhouette Width Batch	0.9540	<u>0.9256</u>	0.9141
	Seurat Alignment Score	<u>0.9367</u>	0.9508	0.9192
Cluster Performance	Normalized Mutual Information	0.6997	0.6823	<u>0.6933</u>

Results - Cell Integration Plots

Results - Regulatory Inference

Gene2peak graph statistics

Model / Graph Property	Number of nodes	Number of edges
GLUE	27266	25552
GLUE + PNA + Decay	27168	26645

Genes included in our graph but excluded in the original graph:

• Pcp2, Apom, Figla, Ctsw, Nmrk2, etc. (41 in total)

More relationships can be extracted using our graph!

Results - Regulatory Inference

Case Study:

Cathepsin W is is a cysteine protease that is encoded by the **CTSW** gene.

It is required for IAV replication.

Reducing the levels of expression of CtsW reduces viral titers for IAV.

CTSW-deficient mice display a 25% increase in survival and a delay in mortality

Günther, S. C., Martínez-Romero, C., Sempere Borau, M., Pham, C., García-Sastre, A., & Stertz, S. (2022). Proteomic Identification of Potential Target Proteins of Cathepsin W for Its Development as a Drug Target for Influenza. *Microbiology spectrum*, *10*(4), e0092122.

Comments on the performance

- Cell integration metrics cannot fully measure the improvements of node features
- Our analysis on the gene2peak graph demonstrates the strengths of our approach
- Gene2TFMotif graph can also be generated using the Motif data

Conclusion

- We design a better graph construction method and graph encoder to integrate multi-omics data via graph learning
- Our method shows comparative results on several metrics and better results on regulatory inference.

Thank you for listening!