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1 Topological Space

Continuous mappings f : Rn → Rm is usually defined using metrics: ∀ϵ > 0, ∃δ > 0, s.t.
d(x, x0) < δ gives d( f (x), f (x0)) < ϵ. But can we define continuity without any notion of metric?

The answer is yes. We can define continuity using only topological structures on sets.

1.1 Basic Definition

Definition 1.1.1 (Topological Space). Suppose we have a set X. A topology T is a set of the subsets of X
with the following properties:

1. ∅, X ∈ T .

2. (Closed under arbitrary union) ∀i ∈ I , Ui ∈ T , then ∪i∈IUi ∈ T .

3. (Closed under finite intersection) U1, . . . , Un, then ∩n
i=1Ui ∈ T .

Remark. A subset U ∈ T is also called an open set. A subset U ∈ X is called a closed set if and
only if X−U is open.

Some examples.

• T = {∅, X}, trivial topology.

• Power set: T = P(X) := {All subsets of X}, dubbed discrete topology.

Definition 1.1.2 (Metric). Let X be a set. A metric on X is a mapping X × X → R≥0, subject to the
following.

1. d(x, y) = 0 ⇔ x = y.

2. d(x, y) = d(y, x), ∀x, y ∈ X.

3. (Triangular inequality) d(x, y) + d(y, z) ≥ d(x, z), ∀x, y, z ∈ X.

Definition 1.1.3 (Open Ball). Let X be a set and d is a metric on X. We define an open ball at x0 with
radius ϵ as

B(x0, ϵ) := {x ∈ X | d(x, x0) < ϵ}. (1)
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Definition 1.1.4 (Metric Topology). Let X be a set and d is a metric on X. Then for any subset U ∈ X, U
is open if and only if

∀x ∈ U, ∃ϵ > 0, s.t.B(x, ϵ) ⊆ U (2)

Remark. This definition satisfies all the requirements of topological space. The proof is trivial.

Moreover, all subset U ∈ T can be written as the union of open balls.

U = ∪x∈U B(x, ϵ). (3)

Definition 1.1.5 (Subspace Topology). Let (X, T ) be a topological space. Suppose S ⊂ X is a subset of
X, then a subspace topology on S induced by T is

T ′ = {U ∈ S | U = S ∩V, V ∈ T }. (4)

Remark. Note that an open set U ⊂ S, U ∈ T ′ is not necessarily open at (X, T ) (i.e., U ∈ T ). A
simple example is S = [0, 1] ⊂ R and T = {(a, b) | a, b ∈ R}, where U = [0, 0.5) ∈ T ′ but U ̸∈ T .

1.2 Continuous Mapping

Now we have defined topology on sets. It’s time to try defining continuity without using the
notion of metric. Remember that in metric topology, we can define continuity as ∀ϵ > 0, ∃δ > 0,
|x − x0| < δ yields | f (x)− f (x0)| < ϵ. This is in fact equivalent to f−1( f (x0)− ϵ, f (x0 + ϵ)

)
is

open in R.

Definition 1.2.1 (Continuous Mapping). Let X, Y be two topological space. We call a mapping f : X → Y
continuous, if

∀U ⊆ Y that is open, f−1(U) ⊆ X is open. (5)

Remark. The composition of continuous mappings is also continuous. Also observe that defini-
tion 1.2.1 reduces to the continuous mapping in Calculus when Y is a metric topology, in which case
we can show ∀x ∈ X, ϵ > 0, ∃U ∈ TX with x ∈ TX, U ⊆ B( f (x), ϵ) is equivalent to definition 1.2.1.

Definition 1.2.1 also provides us a useful trick for defining a topology in space X. Let T f
X :=

{ f−1(U) : U ∈ TY}, then T ( f )
X is a topology on f−1(Y) ⊆ X.

The definition of continuous mapping bridges across two topological space.

Definition 1.2.2 (Homeomorphism). Let X, Y be two topological space. A mapping f : X → Y is a
homeomorphism, denoted X ∼= Y, if

1. f is continuous

2. f is bijective.

3. f−1 is also continuous.

Remark. Homeomorphism is typically hard to disprove. It would take some effort to proof R ̸∼= R2,
and even more effort to show R2 ̸∼= R3.

Some examples.
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• (Embedding) Let f : X → Y be continuous and injective. f is called an embedding from X to
Y, if f : X → f (X) is homeomorphism.
f : R→ R2, f (x) = (ax, bx) is an embedding.

• (Stereographic projection) S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. Then S2\{(0, 0, 1)} ∼= R2.
φ(x, y, z) = ( 2x

1−z , 2y
1−z − 1) and φ−1(x, y− 1) = ( 4x

4+x2+y2 , 4y
4+x2+y2 , −4+x2+y2

4+x2+y2 )

Next, we build a useful tool for proving continuous mappings. The following lemma allows us to
check the continuity of a mapping by checking continuity in its segments.

Lemma 1.2.3 (Pasting Lemma). Let X, Y be two topological spaces, {Xi | i ∈ I} be a family of subspaces
of X. Let { fi | i ∈ I} be a family of continuous functions and fi|Xi∩Xj = f j|Xi∩Xj for ∀i, j ∈ I. If

• Xi are open sets in X.

• Or, Xi are closed and I is finite.

Then f : X → Y with f |Xi = fi is continuous.

1.3 Products of Topology

Let X and Y be two topological space. We want to find topology on X×Y. However, U ×V, U ∈
TX, V ∈ TY does not naturally form a topology, as it is not closed under union.

Definition 1.3.1 (Product Topology). Let (X, TX), (Y, TY) be two topological space. We define open boxes
in X×Y as U ×V, where U ∈ TX and V ∈ TY.

Moreover, we call a subset W ⊆ X×Y open, if it is a union of open boxes.

Remark. To check this is indeed a topology is trivial. The most crucial property is that intersecting
two open boxes (U1 ×V1) ∩ (U2 ×V2) = (U1 ∩U2)× (V1 ∩V2) is still an open box.

1.4 Basis

We have seen in previous examples that a topology space may be constructed from some basic ingre-
dients, e.g., open balls or open boxes. In this section, we formalize this intuition by characterising
open balls and open boxed as basis.

Definition 1.4.1 (Basis for a topology). Let X be a set. B be a family of subsets of X. We call B a basis for
a topology if

• (Covers X) ∀x ∈ B, ∃U ∈ B, such that x ∈ U.

• (Intersection) If U, V ∈ B, there exists a collection of subsets {Wi ∈ B | i ∈ I} such that U ∩V =
∪i∈IWi.

Definition 1.4.2 (Subbasis). Let X be a set. S ⊆ 2X is a subbasis if⋃
Si∈S

Si = X. (only need S cover X) (6)
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Given a subbasis, how do we generate a basis?

Subbasis S −→ Basis B −→ Topology T (7)

Let BS = {Si1 ∩ · · · ∩ Sim | Si1 , . . . , Sim ∈ S}. Then BS is a basis.

Let TB = {⋃i∈I Bi | Bi ∈ B}. Then TB is a topology.

Examples.

• Metric topology (X, d), corresponding to basis open balls {B(x, ϵ) | x ∈ X, ϵ > 0}.
• Product topology X×Y, corresponding to basis open boxes {U ×V | U ∈ X, V ∈ Y}.
• S = {(−∞, a) | a ∈ R} ∪ {(b, ∞) | b ∈ R} is a subbasis in R. Its corresponding basis is
BS = {(a, b) | ∀a, b ∈ R} which is already a topology in R.

• (Initial topology) Consider some continuous mappings fi : X → Yi. Let S = { f−1
i (U) | U ⊂

Yi open}. Then TS is called an initial topology.

Proposition 1.4.3. f : X → Y, S is a subbasis of the topology of Y. Then

f is continuous⇔ f−1(Si) ∈ TX, ∀Si ∈ S (8)

1.5 Hausdorff Space

Definition 1.5.1 (Hausdorff space). A topological space X is called Hausdorff if for any pair of points
x, y ∈ X, there exists an open neighborhood U of x and an open neighborhood V of y such that U ∩V = ∅.

2 Quotient Topology and Gluing

2.1 Basic Definition

Relation. A relation in X is a subset R ⊂ X× X. (x, y) ∈ R is denoted x ∼ y.

An equivalent relation satisfies the following properties:

• (reflexive) x ∼ x

• (symmetric) x ∼ y⇒ y ∼ x

• (transitive) x ∼ y, y ∼ z⇒ x ∼ z

Consider two mappings p1, p2 : T → X. We can define p : T → X × X, such that p(t) =
(p1(t), p2(t)). Then Rp1 p2 = p(T) is a relation generated by p1 and p2.

Definition 2.1.1 (Equivalent class). Let ∼ be an equivalent relation. An equivalent class containing x is
denoted by

[x] := {y ∈ X | x ∼ y}. (9)

Definition 2.1.2 (Quotient sets). The quotient set in X of an equivalent relation ∼ is denoted by

X/ ∼ := {[x] | x ∈ X}. (10)
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2.2 Quotient Topology

Definition 2.2.1 (Quotient Topology). (X, TX) is a topology space. Let f : X → Y be a surjective
quotient. U ⊂ Y is open if f−1(U) is open. The quotient topology is defined as

TY = {U ⊂ Y | f−1(U) ∈ TX} (11)

Remark.

• TY is the finest topology that makes f continuous.

• For an equivalent relation ∼, consider its projection map π : X → X/ ∼. The quotient
topology is

T = {U ⊂ X/ ∼ | π−1(U) ∈ TX} (12)

Definition 2.2.2 (Quotient map). Let X and Y be topological spaces. Suppose f : X → Y is a continuous
and surjective. If the quotient topology is homeomorphic to the topology on Y, i.e., (X/ ∼ f , QT) ∼= (Y, TY),
then f is called a quotient map.

The question is: how do we decide a map is a quotient map or not? The following propositions 2.2.3 and
2.2.4 are usually used jointly to prove a quotient map.

Proposition 2.2.3. Let f : X → Y be continuous and surjective. Let {Ui}i∈I be an open cover of Y. We
denote the restriction of f on Ui by fi : f−1(Ui)→ Ui with fi = f | f−1(Ui)

.

Proposition 2.2.4. Let f : X → Y be continuous and surjective. If f has a section S : Y → X, i.e.,
S : Y → X continuous and f ◦ S = IdY, then f is a quotient map.

Remark. The existence of a section S implies f is surjective.

Proposition 2.2.5. Let f : X → Y be a continuous, surjective map and f is open (or closed) map. Then f is
a quotient map.

2.3 Gluing Open Subsets

Definition 2.3.1 (Open gluing datum). An open gluing datum consists of the following:

• (What to glue) A family of topological spaces {Ui}i∈I .

• (Where to glue) Open subspaces Uij ⊂ Ui, we also set Uii = Ui.

• (How to glue) homeomorphism fij : Uij → Uji

satisfying the following

• fii = IdUi

• fij(Uij ∩Uik) ⊂ Uji ∩Ujk

• (Cocycle condition) The homeomorphisms agree on triple intersections

fik|Uij∩Uik = f jk|Uji∩Ujk ◦ fij|Uij∩Uik (13)
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Remark. The cocycle condition guarantees the consistency when gluing > 2 subsets together.

Definition 2.3.2 (Disjoint union). The disjoint union of a collection of sets {Ui}i∈I :⊔
i∈I

Ui = {(x, i) | i ∈ I , x ∈ Ui} (14)

Definition 2.3.3 (Open gluing: (Ui, Uij, fij)).

U =
⊔
i∈I

Ui. (15)

∼: (x, i) ∼ (y, i)⇔ x ∈ Uij, y ∈ Uji, fij(x) = y. (16)

Check that this is indeed an equivalence relation by definition. We call (U/ ∼, QT) the topological space
glued from datum (Ui, Uij, fij).

2.4 Manifold

Definition 2.4.1 (Chart). Let X be a topological space. An n-dimensional chart on X consists of an open
subset U ⊂ X equipped with the subspace topology and a homeomorphism ϕU → V, where V is an open
subspace of Rn with the standard topology.

Definition 2.4.2. Let M be a Hausdorff space with a countable topological basis (also called second countable).
M is a topological manifold (of pure dimension n) if there exists a collection of (n- dimensional) charts
(Ui, φi)i∈I such that M =

⋃
i∈I Ui.

3 Connectedness

3.1 Connected Spaces

Definition 3.1.1 (Connected Space). A topological space X is connected if it is not the union of two
disjoint non-empty open subsets.

Remark.

X is connected. ⇔ The subsets that are open and closed in X must be ∅ and X.

3.1.1 Connectedness and continuous maps

Proposition 3.1.2. Let f : X → Y be a continuous map of topological spaces. Assume X is connected, then
f (X) is connected.

In order words, connectedness is a topological invariant.

Using this property, we can easily show R ̸∼= R2. Since f (R\{0}) is a connected subspace of R2.
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3.1.2 Connectedness and subspaces

Proposition 3.1.3. Let X be a topological space and X′ ⊆ X is a connected dense subset, then X is also
connected.

Remark. A subset A ⊆ X is dense, if its closed envelop A = X, where A =
⋂

i∈I Vi, Vi is closed and
A ⊆ Vi. An example: Q = R.

Proof. Suppose X is not connected, then there exists a nonempty proper subset U ⊂ X that is closed
and open. Since X′ is dense, U ∩ X′ ̸= ∅. Then U ∩ X′ ⊆ X′ is closed and open in X′, which means
U ∩ X′ = X′. Thus, U = X′ = X′ = X, contradict.

Corollary 3.1.1. If A ⊆ X and A is connected, then its closed envelop A is also connected

3.1.3 Locally constant function

Definition 3.1.4 (Locally constant function). Let Λ be a topological space with discrete topology. A
continuous map f : X → Λ is locally constant if

∀x, ∃U ∈ T , x ∈ U, such that f |U is constant. (17)

Proposition 3.1.5. Let (Λ, discrete) be a topological space with at least two elements. X is a topological
space. Then X is connected if and only if any locally constant function f : X → Λ is constant.

Using proposition 3.1.5, we can prove the following convenient proposition for connectedness.

Proposition 3.1.6. Let {Ai}i∈I be a collection of connected subspaces of X. Let B be a connected subspace
such that B ∩ Ai ̸= ∅, then

B ∪
⋃
i∈I

Ai is connected. (18)

Proof. Define A = B ∪⋃
i∈I Ai. Let f : A→ Λ be a locally constant function. We know f |Ai and fB

are all constant function as Ai and B are connected. Thus, f |A = f |U is constant.

Corollary 3.1.2. (X, T ), if ∀x, y ∈ X, there exists a connected subspace U, x, y ∈ U, then X is
connected.

Corollary 3.1.3. X, Y are connected⇒ X×Y is connected.

Corollary 3.1.4. f : X → Y is a surjective continuous map. Y has the quotient topology. Then X is
connected⇒ Y is connected.

Remark. Based on these corollaries above, we can show some basic spaces are connected.

• Rn is connected. (from corollary 3.1.3)

• Sn is connected. Proof: for x, y ∈ Sn, choose a z ∈ Sn and z ̸= x, z ̸= y. Then Rn/{z} ∼= Rn is
connected.

• RPn and CPn connected from corollary 3.1.4.
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3.2 Path Connectedness

Definition 3.2.1 (Path). Let X be a topological space. A path γ is a continuous map γ : I → X. γ(0) and
γ(1) are the start and the end of the path.

Definition 3.2.2 (Path connected). A topological space X is path connected if for any x, y ∈ X, ∃ a path γ
with γ(0) = x, γ(1) = y.

3.3 Connected Components

Definition 3.3.1 (connected components). (X, T ). x, y are mutually connected if there is a connected
subspace U ⊂ X and x, y ∈ U.

Mutual connectedness is an equivalence relation. Its equivalence class are the connected components of X.

Total number of connected components is a topological invariant: π0(X).

Without any difficulty we can extend the mutual connectedness to mutual path connectedness.
Note that mutual path connectedness is also an equivalence relation. Similarly we define path
connected components.

4 Compactness

Compactness seeks to generalize the property of a bounded and closed subset of Euclidean space.

Definition 4.0.1 (Compactness). Let X, T be a topological space. C is compact if ∀ open cover {ui}i∈I of
X, there exists Ui1 , . . . , Uin ∈ {Ui}i∈I , such that X ⊂ ⋃n

i=1 Uij .

Remark. In other words, any open cover of X contains a finite open cover of X.

Examples.

• (X, trivial) is compact. If |X| < ∞, (X, discrete) is compact.

• [0, 1] is compact.

• (0, 1) is not compact, because {( 1
n , 1)}∞

n=1 is an open cover, but no finite subset of it is a cover.

4.1 Basic Property of Compact Spaces

Proposition 4.1.1. If f is continuous, X is compact, then f (X) is also compact.

4.1.1 With subspace

Proposition 4.1.2. X is a compact, closed space. Z is a closed subspace of X. Then Z is also compact.

Remark. This proposition 4.1.2 guarantees that every bounded closed subset of R is compact.

Proposition 4.1.3. X is Hausdorff. Z ⊂ X is compact⇒ Z is closed.

8



4.1.2 With product space

Definition 4.1.4 (Refinement of an open cover). U = {Ui}i∈I ,V = {Vi}i∈I are open covers of X. If
∀Vi, ∃Uk, such that Vi ⊂ Uk, then V is called a refinement of U .

Proposition 4.1.5. If X, Y are compact topological spaces, then X×Y is also compact.

Proof Sketch. Let U be an open cover of X × Y, we can find a refinement of V of U , where V only
contains the open boxes in X×Y. We can easily find a finite open cover in V using compactness of
X and Y.

Theorem 4.1.6 (Heine-Borel). Let Z be a subspace of Rn. Z is compact if and only if Z is a bounded and
closed subset.

Proof. If Z is compact, then since Rn is Hausdorff, we know Z is closed according to proposition
4.1.3. Note that Z ⊂ ⋃

r>0 B(0, r), so Z ⊂ ⋃
r=r1,...,rn

B(0, r), which means Z is bounded.

The reverse direction is direct since Z is a closed subspace of [−N, N]n for sufficiently large N.

4.2 Compact open topology

In this section, we consider the set of all continuous map from X to Y, dubbed C[X; Y], and assign a
topology on it using compactness.

Definition 4.2.1 (Compact open topology). Consider the set of all continuous map from X to Y: C[X; Y].
Define a subbasis = {MK,U | K ⊂ X compact, U ⊂ Y open}, where

MK,U = { f ∈ C[X; Y] | f (K) ⊂ U}. (19)

The topology generated by this subbasis is called a compact open topology.

Moreover, if (Y, d) is a metric topological space, then we have

Proposition 4.2.2. (Y, d) metric space. A collection of sets

BK( f , ϵ) = {g ∈ C[X; Y] | sup
x∈K

d( f (x), g(x)) < ϵ}. (20)

with K ⊂ X compact. Then {BK( f , ϵ)} is a basis of compact open topology.

Example.

• The solution space for ẍ + x = 0:M = {x = a cos t + b sin t | (a, b) ∈ R2} is homeomorphic
to R2.

Proposition 4.2.3. Y can be embedded into C[X; Y]. Consider a bijective map c : Y → C[X; Y] such that
y 7→ f (X) = y.

Proposition 4.2.4. C[X; Y] is Hausdorff if and only if Y is Hausdorff.

Proposition 4.2.5. C[X; R] is path connected.

Proof. f : X → R. Let c f : [0, 1]→ C[X; R] : c f (t) = t · f .
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5 Homotopy

Homeomorphism is good for sure, but usually too restricted to be held. Here we discuss a weaker
condition, i.e., Homotopy.

5.1 Homotopy of maps

Definition 5.1.1. Let f , g : X → Y be two continuous maps. A homotopy between f and g is a continuous
map σ : X× [0, 1]→ Y such that ∀x ∈ X,

σ(x, 0) = f (x), σ(x, 1) = g(x). (21)

f and g is then homotopic, denoted f ≃ g.

Remark.

• σ defines a path in C[X; Y].

• Be cautious that σ must be continuous on X× [0, 1]. Only continuous for σ(·, t) is not enough.

• If f is homotopic to a constant function, it is called null-homotopic.

Proposition 5.1.2. Homotopy f ≃ g is an equivalence relation.

Remark. We denote the quotient set C[X; Y]/ ≃ as [X; Y].

Proposition 5.1.3. Let f1, f2 : X → Y and g1, g2 : Y → Z. If f1 ≃ f2 and g1 ≃ g2, then

g1 ◦ f1 ≃ g2 ◦ f2. (22)

Proof Sketch. We prove by g1 ◦ f2 ≃ g1 ◦ f1 ≃ g2 ◦ f2.

The first relation can be proved by g1 ◦ σ1. The second can be shown by σ′2(x, t) = σ2( f2(x), t).

5.2 Homotopy equivalence.

We consider the homotopic inverse. For f : X → Y we require its homotopic inverse to satisfy:
f ◦ g ≃ IdY and g ◦ f ≃ IdX.

Definition 5.2.1 (Homotopy equivalence). Topological spaces X and Y are called homotopy equivalent if
there exist continuous maps f : X → Y and g : Y → X such that

f ◦ g ≃ IdY, g ◦ f ≃ IdX. (23)

Examples.

• Rn ≃ {x}.

Definition 5.2.2 (Contractible space). X is a contractible space if X ≃ {x}. This is equivalent to the
condition that IdX is null-homotopic.
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Example.

• R\{0} ≃ {p1} ∪ {p2}.
• R2\{0} ≃ S1.

To better describe the above observation, we define defomation retraction.

Definition 5.2.3 (Deformation retraction). Let X be a topological space and A be a subspace of X. A
deformation retraction is a homotopy

r : X× [0, 1]→ X (24)

such that r(x, 0) = x and r(x, 1) ∈ A. Moreover, for any a ∈ A and t ∈ [0, 1] we have r(a, t) = a.

5.3 Fundamental Group

Definition 5.3.1 (Loop). Let X be a topological space and γ : [0, 1]→ X is a path on X. If γ(0) = γ(1)
we call it a loop.

Definition 5.3.2 (Paths). The inverse of a path γ is γ−(t) = γ(1− t). The constant path I[x] is defined as
γ(t) = x for some x ∈ X.

Definition 5.3.3 (Path homotopy). Two paths with same initial and end points: γ1, γ2 : [0, 1] → X.
γ1 ≃p γ2 if there exists a continuous map σ : [0, 1]× [0, 1]→ X with σ(t, 0) = γ1(t) and σ(t, 1) = γ2(t).
Moreover, we need σ(0, s) = γ1(0) = γ2(0) and σ(1, s) = γ1(1) = γ2(1).

Remark. Path homotopy is stricter than map homotopy as it fixes the initial and end points during
deformation. To see their difference, consider R\{0}.

Definition 5.3.4 (Path multiplication). Let α, β be paths on a topological space X. Suppose α(1) = β(0).
We define

(α ∗ β)(s) =

{
α(2s), s ∈ [0, 1

2 ],
β(2s− 1), s ∈ [ 1

2 , 1].
(25)

Proposition 5.3.5. For a path γ on X we have

γ ∗ γ− ≃p I[γ(0)] (26)

Note that α ≃p α′ and β ≃p β′ yields α ∗ β ≃p α′ ∗ β′. We can define

[α]p ∗ [β]p = [α ∗ β]p (27)

Proposition 5.3.6. Suppose α, β, γ are paths on X. Then

[α]p ∗ ([β]p ∗ [γ]p) = ([α]p ∗ [β]p) ∗ [γ]p. (28)

We now want to use define a group structure on this operation. However, not all paths on X can be
multiplied as they might not have overlapped end points. To fix this issue, we consider loops with
a fixed end points.
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Definition 5.3.7 (Fundamental Group). Let X be a topological space. Let x ∈ X. We define

π1(X, x) = {[γ]p | γ loops in X, i.e., γ(0) = γ(1) = x}. (29)

Then (π1(X, x), ∗) is a group.

Remark.

• On R2 all loops are path homotopic to the constant path. On R2\{0}, however, loops that
wrap around 0 are not path homotopic to the constant path.

• A fundamental group is not necessarily Abelian.

Proposition 5.3.8. π1((X, x), ∗) is a homotopic invariant.

Examples.

• Let A be a band and B be a Mobius band. Then π1(A, ∗) ∼= π1(B, ∗) ∼= π1(S1, ∗) ∼= (Z,+).

Proposition 5.3.9. If X is path connected, then π1((X, x), ∗) ∼= π1((X, y), ∗) for any x, y ∈ X.

Remark. Let X be a topological space, then the followings are equivalent

• π1(X, x) is trivial

• ∀γ1, γ2 paths with γ1(0) = γ2(0) = x and γ1(1) = γ2(1), we have γ1 ≃p γ2.

• All loops at x ≃p constant loop at x.

5.4 Covering Space

Definition 5.4.1 (Covering Space). Let (E, p) be a space over p with p : E→ B continuous surjective. p
is a covering map and (E, p) is a covering space over B, if ∀b ∈ B there exists an open neighbor U of b such
that

p−1(U) =
⋃
i∈I

Ui (30)

where Ui are disjoint open subsets of E and p|Ui : Ui → U is a homeomorphism.

Lemma 5.4.2 (lifting lemma). Let p : E → B be a covering map. Let c : [0, 1] → B be a path on B. If
b̃ ∈ E, p(b̃) = c(0) = b, then there exists a unique path in E: c̃ : [0, 1] → E, such that c̃(0) = b̃ and
p ◦ c̃ = c.

Proposition 5.4.3. Let p : E→ B be a covering map. Let c1, c2 : [0, 1]→ B be two homotopic paths on B.
Suppose c1(0) = c2(0) = b. Then c̃1, c̃2 with c̃1(0) = c̃2(0) = b̃ ∈ p−1(b) are also homotopic.
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5.5 Higher Homotopic Group

In discussion of path-connected components, we note that

π0(X) = {[x → X] | x ∈ X} (31)

can be viewed as the set of all homotopic equivalent classes from a single point to X. Similarly,

π1(X) = {[[0, 1]→ X] | x ∈ X} (32)

can be viewed as the set of all homotopic equivalent classes of loops in X. We want to generalize
0-dim point and 1-dim loops to n dimension in this section.

Definition 5.5.1 (n-cube). In = [0, 1]⊗n = {(t1, . . . , tn) ∈ Rn | ti ∈ [0, 1]}. Then ∂In = {(t1, . . . , tn) ∈
In | ∃ti = 0, 1}.
Moreover, we define a n-loop based at x ∈ X be a continuous map

γ : In → X, s.t., γ|∂In = x. (33)

Remark. This requirement is a generalization of the requirement γ(0) = γ(1) in the 1-dimensional
case, i.e., loops.

Definition 5.5.2 (Homotopy for n-loops). Let γ, σ be two n-loops based at x. Let γ(x) = σ(x) for any
x ∈ ∂In. Then γ ≃ σ homotopic as n-loops if there exists H : In × I → X such that

H(t; 0) = γ(t), H(t; 1) = σ(t), and H(t; s) = x, ∀t ∈ ∂In, s ∈ I. (34)

To construct group structures for n-loops, we define their composition as

σ1 ∗ σ2 =

{
σ1(2t1, t2, . . . , tn), 0 ≤ t1 ≤ 1/2.
σ2(2t1 − 1, t2, . . . , tn), 1

2 ≤ t1 ≤ 1.
(35)

Remark.

• Surprisingly, σ1 ∗ σ2 ≃ σ2 ∗ σ1 for n ≥ 2. In other words, (πn(X, x), ∗) is an Abelian group.

• Moreover, [σ1 ∗ σ2]p well defined, in the sense that choosing the first index in eq. (35) is
equivalent to choosing any other coordinate in [n].

Examples.

• πn(Sn) ∼= Z, n ≥ 1.

• π5(S2) ∼= Z2, π6(S2) ∼= Z12.

• π1(RP2) ∼= Z2, πn(RPn) ∼= Z, n ≥ 2.

• (Bott periodicity of Lie groups) For n ≥ (k + 1)/2,

πk(U(n)) ∼= πk(SU(n)) ∼=
{
{e}, k even
Z, k odd.

(36)
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5.6 Application of Homotopy: Taxonomy of Defects

For a given material, describe its magnetic feature by its magnetic moment m⃗(x) = ⟨∑i mi(x)⟩.
The free energy

F = Fgrad +Fpotential +Fext. (37)

where
Fgrad = κ|∇m|2 (38)

and

Fpotential = −α(T)|m|2 + β(T)|m|4 + α(T)2

4β(T)
. (39)

Note that we should minimize F =
∫
F (x)dx. Suppose the gradient is zero, i.e., the magnetic

moment is constant (homogeneous). If α(T) < 0, β(T) > 0, then |m⃗| = 0. If α(T) > 0, β(T) > 0,
then |m⃗| > 0, i.e., Ferromagnetism.

We define defects as m⃗(x), F < ∞ where F is a local minimum. If m⃗(x) is regular everywhere, we
call it a regular defect. If m⃗(x) has a singular point, we call it a singular defect.

For regular defects, we know when |x| → ∞, F → 0 or otherwise the integration would not be
finite. Thus,

lim
|x|→∞

|m⃗(x)| = m0 ∝
√

α

β
. (40)

The boundary condition for m⃗(x) : Rd → R3 is bounded to S2. The solution is locally stable
guaranteed by homotopy on πd−1(S

2).

π0(S2) = π1(S2) = {0}, π2(S2) = Z.

6 Homology

6.0.1 Simplex

• 0-simplex: a point ⟨p0⟩.
• 1-simplex: an edge: ⟨p0, p1⟩.
• 2-simplex: an triangle ⟨p0, p1, p2⟩, but p0, p1, p2 do not lie on a same line.

Geometric independence: r + 1 points are geometrically independent, if p0, . . . , pr ⊆ r − dim
hyperplane, but p0, . . . , pr ̸⊆ (r− 1)− dim hyperplane.

Definition 6.0.1 (r-simplex). {p0, . . . , pr} be (r+ 1)-geometrically independent. p0, . . . , pr ∈ Rm, m ≥ r.
A r-simplex σr(⟨p0, . . . , pr⟩) is defined as

σr = {x ∈ Rm | x =
r

∑
i=1

ci pi, ci ≥ 0,
r

∑
i=0

ci = 1} (41)

Remark. {ci} are called the barycentric coordinates of x.
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Definition 6.0.2 (q-face). Let q ∈ Z, 0 ≤ q ≤ r. Select q + 1 points from {p0, . . . , pr} and denote them
by {pi0 , . . . , piq}. Then the q-simplex ⟨pi0 , . . . , piq⟩ is a q-face of ⟨p0, . . . , pr⟩, denoted

⟨pi0 , . . . , piq⟩ ≤ ⟨p0, . . . , pr⟩ (42)

6.0.2 Simplicial Complex

Definition 6.0.3. K is a set of simplexes. K is a simplicial complex if

• σ ∈ K, σ′ ≤ σ⇒ σ′ ∈ K

• For any σ, σ′ ∈ K, either σ ∩ σ′ = ∅, or σ ∩ σ′ ≤ σ, σ ∩ σ′ ≤ σ′.

Remark. For a simplicial complex K, the union of all elements in K is called a polyhedron,
|K| :=

⋃
σ∈K σ.

Definition 6.0.4 (Triangulation). Let X be a topological space. If there exists a simplicial complex K, such
that f : |K| → X is a homeomorphism, then X is triangulable, and (K, f ) is a triangulation of X.

6.1 Chain Group

Define orientation on ⟨p1, . . . , pn⟩. Two simplexes have the same orientation if they differ by an
even permutation.

Definition 6.1.1 (Chain group). K simplicial complex. The r-chain group on K, Cr(K), is an Abelian
group generated by the oriented r-simplexes of K. If r > dim K, Cr(K) = 0. An element in Cr(K) is called
an r-chain.

Remark.
Cr(K) = {∑

i
ziσ

r
i | zi ∈ Z, σr

i ∈ K}. (43)

• For c = ∑i ciσ
r
i , d = ∑i diσ

r
i , c + d = ∑i(ci + di)σ

r
i .

• Cr(K) ∼= Zd for some d. d is the dimension of Cr(K) and d = the number of r-simplex in K.

• Consider dim K = 2, dim C2(K)− dim C1(K) + dim0(K) is the Euler characteristic for planar
graphs, which is invariant under homotopy.

Next, we define cycle groups and boundary groups that are subgroups of chain groups. We start
with defining what a boundary is.

Definition 6.1.2 (Boundary). Note that the boundary of a r-simplex is a union of (r− 1)-simplexes it
contains. We define a boundary operator ∂r : Cr(K)→ Cr−1(K):

∂r(∑
i

ziσ
r
i ) = ∑

i
zi∂r(σ

r
i ) (44)

and for σr
i = (p0, p1, . . . , pr),

∂r(σ
r
i ) =

r

∑
i=0

(−1)i(p0, . . . , pi−1, pi+1, . . . , pr). (45)

By definition we know σr is a group homomorphism.
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Then the kernel ker(∂r) is called the cycle group and the image Im(∂r) is called the boundary group.

Definition 6.1.3 (Cycle group). An r-cycle group Zr(K) is defined as

Zr(K) = Ker(∂r) = {c ∈ Cr(K) | ∂rc = 0}. (46)

Definition 6.1.4 (Boundary group). An r-boundary group Br(K) is defined as

Br(K) = Im∂r+1 = {c ∈ Cr(K) | c = ∂r+1d, d ∈ Cr+1(K)}. (47)

Proposition 6.1.5. ∂r ◦ ∂r+1 : Cr+1(K)→ Cr−1(K) is a zero map.

Therefore, Br(K) ⊂ Zr(K) ⊂ Cr(K).

6.2 Simplicial Homology

We define a chain complex (C·, d·) of Abelian groups (Cn)n∈Z and homomorphisms of Abelian
groups

dn : Cn+1 → Cn (48)

subject to dn ◦ dn+1 = 0 for all n ∈ Z.

Definition 6.2.1 (Homology). An r-homology group of (C·, d) is defined as

Hr(C·, d) =
Ker(dr : Cr → Cr−1)

Im(dr+1 : Cr+1 → Cr)
(49)

Theorem 6.2.2. Let X,Y be two triangulable homeomorphic topological space, and (K, f ), (L, g) be triangu-
lations of X and Y. Then

Hr(K) ∼= Hr(L) (50)

Proposition 6.2.3. Let K be a connected simplicial complex, then

H0(K) ∼= Z (51)

6.3 Structure of Homology Group

Note that Hr(K) is Abelian. The most general form of an Abelian group is

Hr(K) ∼= Zn ×Zk1 × · · · ×Zkp (52)

The first part is called the free part and the second is called torsion part.

If we change the coefficient in chain groups from integer to real numbers, the torsion part disappears.
So Hr(K; R) ∼= R f .

Definition 6.3.1 (Betti number). Let K be a simplicial complex. The r-th Betti number is

br(K) = dim Hr(K; R) (53)

which is also the rank of the free Abelian part of Hr(K; Z).
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Definition 6.3.2 (Euler characteristics). Let K be an n-dimensional simplicial complex, and Ir be the
number of r-simplexes in K. The Euler characteristics χ is

χ(K) =
n

∑
r=0

(−1)r Ir. (54)

Theorem 6.3.3 (Euler-Poincare). Let K be an n-dim simplicial complex,

χ(K) =
n

∑
r=0

(−1)rbr(K). (55)

6.4 Smith Normal Form

Let A = (aij) ∈ Mm×n(Z). A is in Smith normal form if

• aij = 0, ∀i ̸= j

• 0 ≤ r ≤ min(m, n), aii ̸= 0 for i ≤ r and aii = 0 otherwise.

• ai = aii, 0 ≤ i ≤ r, then ai|ai+1.

Proposition 6.4.1. If A ∈ Mm×n(Z), then there exists U ∈ Mm×m(Z), V ∈ Mn×n(Z), det U =
±1, det V = ±1, and D ∈ Mm×n(Z) is in Smith normal form. We have

A = UDV. (56)

Proposition 6.4.2. Cr−1(K) ← Cr(K) ← Cr+1(K) ← . . . . Let A be the matrix representation for ∂r+1
and B for ∂r.

Suppose SNF(A) = diag(a1, . . . , ar, 0), then

Hr(K; Z) ∼= KerB/ImA ∼= Zdim Cr(K)−r−s ×Za1 × · · · ×Zar (57)

where r = rankA, s = rankB.
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