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Probability: Study of regular patterns that arise from random phenomena

Statistics: The inverse problem of making inferences from observations of patterns in random phenomena.
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1 Preliminary: Measure Theory

Measures are defined to characterize the ”mass” of a set, which is crucial in defining the Lebesgue
integral, probability measure, etc. In order to define measures, we need first assume some structures
on the space of sets, i.e., σ-Algebra.

1.1 σ-Algebra

Definition 1.1 (σ-Algebra). A σ-algebra on X is a family of subsets of X, F , such that,

• ∅, X ∈ F

• If A ∈ F , then AC ∈ F

• Let I be a countable set. If ∀Ai ∈ F , for i ∈ I , then
⋃I

i=1 Ai ∈ F and
⋂

i∈I Ai ∈ F .

Definition 1.2 (Borel σ-Algebra). Borel σ-Algebra B(X) is the σ-Algebra generated by open sets in X.

B(X) = B(TX) (1)

where (X, TX) is a topological space.

1.2 Measures

Definition 1.3 (Measures). A measure µ : F → [0, ∞] is defined on a space with σ-Algebra (X,F ), such
that

• µ(∅) = 0.

• µ(∪∞
i=1Ai) = ∑∞

i=1 µ(Ai), for disjoint sets {Ai}.

This space is then called measurable space (X,F , µ).

Definition 1.4 (Probability measure). A probability measure µ on X is a specific measure with µ(X) = 1.

Other measures:

• Dirac measure:

δt(A) :=

{
1, t ∈ A
0, t ̸∈ A

(2)

• Counting measures
#(A) = # elements in A (3)
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1.3 Some related definitions

Finite measure: If µ(X) < ∞, then µ is finite.

σ-finite measure: If we can cover X by countably many measurable sets each with finite measure,
we call it a σ-finite measure.

A straightforward claim: finite measures are σ-finite measures. ”Length” on R is a σ-finite measure
but not finite.

Negligible: If a measurable set A has µ(A) = 0 then it is a negligible set for µ.

Almost everywhere: If a measurable set A has µ(AC) = 0 then it is µ-almost everywhere, denoted
as µ−a.e.

1.4 Lebesgue measure

Borel measure: B(R) → [0, ∞].

Lebesgue measures are defined on Borel σ-Algebra. For example, on R:

λ(A) := inf{
∞

∑
i=1

|bi − ai| : A ⊆
∞⋃

i=1

(ai, bi)}, ∀A ∈ B(R). (4)

Intuition: to find the minimum union of intervals that covers A. (Note: union of intervals on R can
always be written as a countable union of intervals).

• It is a measure

• λ((a, b)) = |b − a|, for a < b.

• Translation invariance: λ(A + t) = λ(A) for all A ∈ B(R).

Lebesgue measure is the only Borel measure that satisfies the above properties.

Another example of Borel measure: is the cumulative distribution function, which is finite and
monotone.

1.5 Integration

Riemann Integral. Let a ≤ b ∈ R. We say f is Riemann Integrable if the following limit exists:

lim
max ∆xk→0

n

∑
k=1

f (x∗k )∆xk, (5)

where x∗k is an arbitrary point in the interval ∆xk.

However, Riemann integral may not exist. For example, fn(qi) = 1 for rational numbers in [0, 1]
and fn(x) = 0 otherwise. No matter how small an interval ∆xk could be, it contains rational
numbers and irrational numbers.
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Definition 1.5 (Decreasing Rearrangement). For a function f : R → R+, the dereasing rearrangement
h : R+ → R+ is defined as following:

h(t) := λ{x ∈ RL f (x) > t}for t ≥ 0. (6)

h(t) is a decreasing function, as measure h is monotonic.

Remark. Given the definition of h, our expectation is to define integration by:∫
R

f (x)λ(x) =
∫ ∞

0
λ{x ∈ R : f (x) > t}dt =

∫ ∞

0
h(t)dt. (7)

The intuition of this definition is: instead of counting the area by x-axis, we count the area by y-axis.

In order to ensure this integration works, we need {x ∈ R : f (x) > t} to be measurable. The
definition below of measurable function solves this problem.

Definition 1.6 ((Borel) Measurable function). Let (X,F ) be a measurable space. A function f : X → R

is Borel-measurable if
f−1((t, ∞)) := {x ∈ X : f (x) > t} ∈ F (8)

Proposition 1.7. A function f : X → R is Borel measurable if and only if

f (−1)(B) ∈ F , (9)

for all Borel B ∈ B(R).

Properties of measurable functions:

• If f , g measurable, f ◦ g is measurable (for X = R),

• f + g is measurable,

• f+(x) := max{ f (x), 0}, f(x) = max− f (x),0 are measurable,

• | f | is measurable,

• f g is measurable.

• If fi : X → R ∪ {−in f ty, ∞} are measurable functions, supi∈N fi, infi∈N fi are measurable.

Given the rigorous definition above, we can finally define Lebesgue integration. We first define it
on positive functions and use it as a tool to define Lebesgue-integrable function in general.

Definition 1.8 (Lebesgue integral of positive function). Let µ be a Borel measure. Let f : R →
R+ ∪ {∞} be a positive, measurable function. Then we define the Lebesgue integral of f with respect to µ
with ∫

R
f (x)µ(dx) =

∫ ∞

0
µ{x ∈ R : f (x) > t}dt (10)
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Definition 1.9 (Lebesgue integrable function). A finite valued measurable function f : R → R is
integrable with respect to Borel measure µ if∫

R
| f (x)|µ(dx) < ∞. (11)

Its Lebesgue integral is defined as∫
R

f (x)µ(dx) :=
∫

R
f+(x)µ(dx)−

∫
R

f−(x)µ(dx). (12)

notated by µ( f ).

Proposition 1.10. A bounded function over a bounded domain f : [a, b] → R is a Riemann integrable
function, then f is Lebesgue integrable with respect to the Lebesgue measure λ.

f[a,b] f (x)λ(dx) =
∫ b

a
f (x)dx. (13)

Proposition 1.11 (Monotone Convergence). Let ( f j : X → R+ ∪ {∞})j ∈ N are positive, measurable
functions. f j(x) increasing in terms of j, and limj→∞ f j(x) = f (x) for all x ∈ X. Then the integral

lim
j→∞

µ( f j) = µ( f ). (14)
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2 Mathematical Foundation of Probability

Developed by Kolmogorov in 1933, an axiomatic foundation for the theory of probability.

Definition 2.1 (Probability Space, ANK 1933). A triple (Ω,F , P), where

• Ω is a set called the sample space.

• F is a σ-Algebra of Ω.

• P is a probability measure on (Ω,F ) assigning probability to events.

Notes:

• ω ∈ Ω are called sample points, outcomes of a probability experiment in simple cases.

• F identifies sets of sample points that are assigned probabilities. E ∈ F are called events.

• When ω0 ∈ E occurs, we say the event E occurs.

• If Ω is finite or countable, then we can take F = P(Ω). However for Rn, the power set is too
big for a reasonable measurable σ-Algebra, so we take Borel σ-Algebra B(Rn).

States in Ω give a complete system description, but it’s often too detailed and inaccessible. Instead,
we are more interested in observables, or system statistics, which are called random variables in
probability theory.

Definition 2.2 (Real Random Variable). Let Ω,F , P be a probability space. A real random variable is a
measurable function

X : Ω → R (15)

Remarks.

X is a fixed function, so where does the ”randomness” come from? In fact, all the randomness
comes from the X(ω) where ω is random in the probability space.

Distributions of probability over the events induce a distribution of probability over the values in
R of the random variable.

The term ”measurable function” used above is defined as:

Definition 2.3 (Measurable function). A measurable function X : Ω → R has the property that
X−1(B) ∈ F for all B ∈ B(R).

Based on this property, we can compute the probability that X takes a value in B ∈ B(R):

P(X ∈ B) := P{ω ∈ Ω : X(ω ∈ B} = P(X−1(B)). (16)

Definition 2.4 (Law of a real random variable). Let Ω,F , P be a probability space. Let X : Ω → R be a
real random variable.

The law (or distribution) of X is the Borel probability measure µX on (R,B(R)), s.t.,

µX(B) = P{X ∈ B}, ∀B ∈ (R). (17)
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Notes. The probability that X ∈ B can be expressed as

P(X ∈ B) =
∫

R
1B(x)µX(dx). (18)

Definition 2.5 (Distribution function). Let X be a real random variable on a probability space with law
µX. Define

FX(a) := P{X ≤ a} = µX((−∞, a]), ∀a ∈ R. (19)

This is called a cumulative distribution function (CDF) of X.

Note: It is important to make sure it’s a ≤ but not a < in the definition.

Properties of CDF:

• Monotonicity

• Asymptotic

• Right-continuous

• Law: µX(a, b] = FX(b)− FX(a).

Continuous random variables: Law has a density with respect to the Lebesgue measure λ.

µX(B) =
∫

B
fX(x)λ(dx). (20)

where fX(x) is the probability density function. In particular, FX is absolutely continuous.

Singular continuous: FX is continuous but µX has no densit1y functions.
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3 Expectation

3.1 Definitions

Definition 3.1 (Expectation). Let (Ω,F , P) be a probability space and X : Ω → R be a real random
variable.

The expectation E[X] is the real number given by the integral:

E[X] :=
∫

Ω
X(ω)P(dω) =

∫
Ω

XdP. (21)

More formally, we define it using the Lebesgue integral:

E[X] :=
∫ ∞

0
P{X > t}λ(dt), when X ≥ 0. (22)

For real X (not necessarily positive), if E[|X|] < ∞, we define E[X] := E[X+]− E[X−].

Definition 3.2 (Integrable random variable.). For a probability space (Ω,F , P), we define

L1 := L1{Ω,F1, P} = {X : Ω → R : E[|X|] < ∞}. (23)

Note: Not all random variables are integrable, e.g., Cauchy random variables.

3.2 Change of variables

How to compute the expectation using the law? We have the change of variables proposition.

Proposition 3.3 (Law of the unconscious statistician, Lotus). Let X be a real random variable with law
µX. Let h : R → R be a function that is µX-integrable. Then

E[h(X)] =
∫

R
h(x)µX(dx) (24)

Example. If X is continuous with a density fX,

E[X] =
∫

R
x · µX(dx) =

∫
R

x fX(x) · λ(dx) (25)

Expectation is linear. E[αX1 + X2] = E[αX1] + E[X2].

3.3 Convexity

Recall the (informal) definition of convex functions in R → R:

f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2), ∀x1, x2 ∈ dom( f ), dom( f ) convex. (26)
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Proposition 3.4 (Subgradient property). Suppose f : Rd → R is a convex function. Then for all
x, y ∈ Rd, there exists a subgradient vector gx ∈ Rd.

f (y) ≥ f (x) + ⟨y − x, gx⟩. (27)

Theorem 3.5 (Jensen’s inequality). Let f : R → R convex. Assume f is bounded below. Let X be an
integrable random variable, then

E[ f (x)] ≥ f (E[X]). (28)

Proof Sketch. Use the subgradient property with x = E[X] and the inequality should pop out
directly.
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4 Moments and Tails

How do we collect information about the distribution of a random variable?

4.1 Definitions

Definition 4.1 (Moment). Let X be a real random variable with law µX . A moment is an integral of a real
test function (µX-integrable) h : R → R against the law:

E[h(X)] =
∫

R
h(x)µX(dx) (29)

Examples:

• Indicator h = 1B for Borel B, which gives µX(B).

• 1st order moment, h(x) = x. Then m1 = E[X] =
∫

R
xµX(dx).

• n-th polynomial moment: h(x) = xn for n ∈ N. mn = E[Xn].

• Exponential moment: let h(x) = expθx. E[eθX].

Definition 4.2 (Tails). Let X be a real random variable, t ∈ R. The (right) tail is defined as P(X ≥ t). We
often refer to the tail probability P(|X| ≥ t).

4.2 Moments and Tail Bounds

Several theorems on tail bounds bridge a connection between moments and tails.

Theorem 4.3 (Markov’s inequality). Let X be a real random variable and X ≥ 0.

P[X ≥ t] ≤ 1
t

E[X], ∀t > 0. (30)

Remark. For positive, increasing φ : R+ = R+, we have

P{X ≥ t} ≤ 1
φ(t)

E[φ(X)], ∀t > 0. (31)

We can use φ(x) = xp to introduce higher-order information of X to the tail bound. φ(x) = expcx

sometimes yields a tighter tail bound of exponential decay, i.e., Chernoff bound.

In other words, polynomial moments control tail probabilities.

Theorem 4.4 (Integral by parts). Let X be a positive real random variable and φ : R+ → R be an
increasing and continuously differentiable function. Then,

E[φ(X)] = φ(0) +
∫ ∞

0
P{X ≥ t}φ′(t)dt. (32)

11



Remark.

• When φ(x) = xq for some q > 0, then

E[|X|q] =
∫ ∞

0
P{|X| ≥ t} · q · tq−1dt. (33)

This means tail probability controls moments.

Assume X is a real random variable with P{|X| ≥ t} = O(t−p) for some p ≥ 1. Then we can
bound the q-th moment for q < p.

E|X|q =
∫ ∞

0
P{|X| ≥ t}qtq−1dt (34)

=
∫ 1

0
P{|X| ≥ t}qtq−1dt +

∫ ∞

1
P{|X| ≥ t}qtq−1dt (35)

≤
∫ 1

0
qtq−1dt +

∫ ∞

1
Cqtq−p−1dt (36)

= 1 +
Cq

p − q
< +∞ (37)
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5 Lp Spaces

Definition 5.1 (Lp space). For p > 0, the space Lp := Lp{Ω,F , P} is

Lp := {X : Ω → R : E|X|p < ∞}. (38)

Roughly, random variables with tail decay rate at least t−p. These random variables are called “p-integrable
random variables”.

Remarks. Lp is a linear space.

Definition 5.2 (Homogeneous p-th moment.). For p > 0, we define the homogeneous p-th moment of X
by

∥X∥p := (E|X|p)1/p (39)

Sometimes denoted as ∥X∥Lp .

Theorem 5.3 (Lyapunov inequality). For 0 < p ≤ q, real random variables X have

∥X∥p ≤ ∥X∥q. (40)

Therefore,
∥X∥q ⊆ ∥X∥p. (41)

Proof Sketch. Use Jensor’s inequality for φ(t) = |t|q/p.

Warning. For sequence spaces, ℓp ⊆ ℓq. For Lebesgue spaces Lp(R) ̸⊂ Lq(R).

5.1 Pseudonorm

Question: Is ∥ · ∥Lp a norm? We would need to prove the triangular inequality.

Theorem 5.4 (Hölder’s inequality). Let X, Y be real random variables with X ∈ Lp, Y ∈ Lq with
1
p +

1
q = 1,p, q > 1.

∥XY∥1 ≤ ∥X∥p∥Y∥q. (42)

Proof. We use a lemma called Young’s inequality. If 1
p +

1
q = 1, p > 1, then |xy| ≤ 1

p |x|p +
1
q |y|q. We

consider X/∥X∥p and Y/∥Y∥q, and take expectation.

Theorem 5.5 (Minkowski). Assume p ≥ 1. Let X, Y ∈ Lp. Then

∥X + Y∥p ≤ ∥X∥p + ∥Y∥p. (43)
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Proof.
|X + Y|p = |X + Y| · |X + Y|p−1 ≤ |X| · |X + Y|p−1 + |Y| · |X + Y|p−1. (44)

Apply Holden with 1
p +

p−1
p = 1.

E|X + Y|p ≤ (E|X|p)1/p(E|X + Y|p)
p−1

p + (E|Y|p)1/p(E(|X + Y|p)p−1/p) (45)

After dividing E|X + Y|p−1, the triangular inequality pops out.

Proposition 5.6 (Lp pseudonorm). For random variables in Lp, ∥ · ∥p is a pseudonorm

• Positive semi-definite: ∥X∥p ≥ 0 and ∥0∥p = 0.

• Positive homogeneous: ∥αX∥ = |α| · ∥X∥p.

• Triangle inequality: ∥X + Y∥p ≤ ∥X∥p + ∥Y∥p.

• Almost positive: ∥X∥p = 0 implies X = 0 µ-almost sure.

We can thus define a pseudometric on Lp:

D(X, Y) := ∥X − Y∥p, ∀X, Y ∈ Lp. (46)

5.2 Convergence in Lp

Definition 5.7. A sequence (Xj : j ∈ N) in Lp converges in Lp if there is a real random variable Y ∈ Lp,
such that

∥Xj − Y∥p → 0, as j → ∞. (47)

Notes. Xj → Y in Lp implies Xj → Y in Lq for q ≤ p.

Question: When does a sequence in Lp converge?

Definition 5.8 (Cauchy sequence). A sequence (Xj : j ∈ N) in Lp is called Cauchy if

sup
i,j≥N

∥Xi − Xj∥p → 0 as N → ∞. (48)

It is trivial that any converging sequence is Cauchy, but the other direction is not trivial.

Theorem 5.9 (Lp space is complete.). Every Cauchy sequence in Lp converges to a random variable.
Moreover, it converges to a random variable in Lp.

Notes. An example of non-complete space: Q. A sequence of rational numbers may converge to an
irrational number.

Remark. Limits in Lp are not necessarily unique! They are only required to be equal µ-almost
surely.
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5.3 L2 Space

Next, we restrict our discussion to L2 space, which is special for setting orthogonality, variance,
covariance, and orthogonal projection.

L2 := L2(Ω,F , P) = {X : Ω → R : E|X|2 < ∞}. (49)

Theorem 5.10 (Cauchy-Schwarz). If X, Y ∈ L2, then XY ∈ L1, and

|E[XY]| ≤ ∥XY∥1 ≤ ∥X∥2 · ∥Y2∥. (50)

This is a special case of Hölder’s theorem when p = q = 2. Nevertheless, here is another simpler
proof

Proof. Let t ∈ R.
0 ≤ E(t|X|+ |Y|)2 = E|X|2t2 + 2tE|XY|+ E|Y|2, (51)

which is a quadratic function of t. Hence 4(E|XY|)2 − 4E|X|2E|Y|2 ≤ 0.

Definition 5.11 (L2 (pseudo)-inner product). For random variables X, Y ∈ L2, we define

⟨X, Y⟩L2 := E[XY]. (52)

Remarks.

• This is well-defined by Cauchy-Schwarz.

• ⟨X, X⟩ = E[|X|2] = ∥X∥2
L2

.

Definition 5.12 (Orthogonality). If ⟨X, Y⟩ = 0, then we say X and Y are orthogonal random variables,
and we write X ⊥ Y.

Warning: X ⊥ Y does NOT imply that X, Y are ”independent”.

Definition 5.13 (Covariance). Let X, Y ∈ L2, the covariance of X, Y is

Cov(X, Y) := ⟨X − EX, Y − EY⟩. (53)

If Cov(X, Y) = 0, we say X, Y are uncorrelated, not necessarily independent!

Moreover, we define the variance of a random variable X ∈ L2 by Var(X) := Cov(X, X).

The correlation of X, Y is defined by

ρ(X, Y) :=
Cov(X, Y)√

Var(X) · Var(Y)
∈ [−1, 1] (54)

Proposition 5.14 (Pythagorean). If X, Y ∈ L2, then Cov(X, Y) = 0 implies

Var(X, Y) = Var(X) + Var(Y). (55)
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Theorem 5.15 (Orthogonal projection). Let K ⊆ L2 be a complete linear subspace of L2(Ω,F , P).

For X ∈ L2, there is a random variable Y ∈ K such that

• Primal: ∥X − Y∥2 = inf{∥X − w∥2 : w ∈ K}.

• Dual: (X − Y) ⊥ Z for all Z ∈ K.

These two statements are essentially the same. We call Y a version of the orthogonal projection of X onto K.

Remark. Such Y are not unique. We can have Y = Y′ almost surely.

Proof. Consider a minimizing sequence in K: (Yi ∈ K : I ∈ N), such that ∥Yi − X∥2 is decreasing
and converges to d := inf{∥w − X∥2 : w ∈ K}.

Step 1: Show that (Yi) has a limit in K, which is a candidate for the projection. Check that the
sequence (Yi) is Cauchy.

0 ≤ ∥1
2
(Yi − Yj)∥2 =

1
2
∥Yi − X∥2 +

1
2
∥Yj − X∥2 − ∥1

2
(Yi + Yj)− X∥2 ≤ d2 + (−d2) = 0. (56)

So Yi is Cauchy in K. Since K is complete, we know Yi → Y for some Y ∈ K. Y is a candidate for
the orthogonal projection of X onto K.

Step 2: Check that Y is indeed an orthogonal projection. By Minkowski, for each i

∥X − Y∥2 ≤ ∥X − Yi∥2 + ∥Yi − Y∥2, (57)

which converges to d. Moreover, ∥X − Y∥2 ≥ d, so ∥X − Y∥2 = d.

Step 3: Dual characterization. For Z ∈ K, let t ∈ R, Y + tZ ∈ K since K is a linear subspace. Then

∥X − (Y + tZ)∥2 ≥ ∥X − Y∥2 (58)

Expand the equation and it’s trivial to see we must have ⟨X − Y, Z⟩ = 0.
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6 Independence

Let (Ω,F , P) be a probability space. How to update our knowledge about an event A, when
another event E has occurred?

P(A|E) :=
P(A ∩ E)

P(E)
(59)

We define F|E the σ-algebra {A ∩ E | A ∈ F}.

Then (E,F|E, P(·|E)) is a probability measure space.

Definition 6.1 (Independence of events). Suppose knowledge that E occurs does not change the probability
of A:

P(A|E) = P(A) (60)

Then we call events A and E are independent. It is equivalent to saying

P(A ∩ E) = P(A) · P(E). (61)

6.1 Independent for random variables

How about random variables being independent? Random variables can take any value in their
domain, so we must consider a series of events to be independent.

Definition 6.2 (Independence of random variables). Let X, Y be real random variables. We say that
(X, Y) are independent when

P{X ∈ A ∩ Y ∈ B} = P{X ∈ A} · P{X ∈ B}, (62)

for all A, B ∈ B(R).

In particular, for all a, b ∈ R, it is common to see the definition below,

P{X ≤ a ∧ Y ≤ b} = P{X ≤ a} · P{Y ≤ b}. (63)

Fact: These two definitions are equivalent.

This is also equivalent to

µXY(A × B) = µX(A) · µX(B), ∀ A, B ∈ B(R). (64)

Moreover, it is equivalent to µXY = µX × µY on B(R2).

Proposition 6.3. Let X, Y be independent real random variables. Let f ∈ L1(µX) and g ∈ L1(µY). Then

E[ f (X) · g(Y)] = E[ f (X)] · E[g(Y)]. (65)
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Proof.

E[ f (X) · g(Y)] =
∫

R2
f (x)g(y)µXY(dxdy) (66)

=
∫

R2
f (x)g(y)µX(dx)µY(dy) (67)

=
∫

R
f (x)µX(dx)

∫
R

g(y)µY(dy) = E[ f (X)]E[g(Y)]. (68)

Question: Can we generate a collection of random variables with specified marginals? For a
countable sequence, the answer is yes!

Theorem 6.4 (Kolmogorov extension). Let (µi : i ∈ N) be a collection of Borel probability measures on
R. Define

Ω = RN = {ω = (ω1, ω2, . . . , ) : ωi ∈ R, i ∈ N}. (69)

Consider coordinate random variables Xi(ω) = ωi.

We can define product σ-algebra:

F = σ(Xi : i ∈ N) = smallest sigma algebra that have coordinate rvs measurable. (70)

There exists a product probability measure P in (Ω,F ), such that

P{(x1, x2, . . . ) ∈ B1 × B2 × . . . } = ∏
i∈N

P(Xi ∈ Bi) = ∏
i∈N

µi(Bi). (71)

6.2 Independence for sigma-algebras

Note that σ-algebras carry information. We can also define the independence of σ-algebras.

Definition 6.5 (Independence of σ-algebra). Let (Ω,F , P) be a probability space. Let F1,F2 be sub-σ-
algebra of F .

We say that F1,F2 are independent if for all E1 ∈ F1 and E2 ∈ F2,

P(E1 ∩ E2) = P(E1) · P(E2). (72)

For events A, B.σ({A}) = {∅, A, AC, Ω}. We can check that A and B are independent if and only
if σ({A}) and σ({B}) are independent σ-algebras.

For real random variables: σ(X) := σ({X−1(B), B ∈ B(R)}). Then real random variables X, Y are
independent if and only if σ(X),σ(Y) are independent σ-algebras.
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7 Law of Large Numbers

Definition 7.1 (Stochastic process). Let (Ω,F , P) be a probability space. A stochastic or random process
is a family (Xt : t ∈ T) of real random variables, indexed by an abstract set T.

• Discrete time: T = N.

• Continuous time: T = R≥0.

• Space: T = Rn, ”random fields”.

Key models covered in this note: Independent sum; discrete-time martingales.

Definition 7.2 (Independent sum). Let (Yi : i ∈ N) be an independent sequence of real random variables.

The partial sums:

Xn :=
m

∑
i=1

Yi (73)

compose a discrete-time (T = Z+) random process, called an independent sum process.

Examples.

• Repeated independent experiments.

• Random walk.

• Renewal processes.

Definition 7.3 (Running average process). Let (Yi : i ∈ N) be independent real random variables.
X̄n = 1

n ∑n
i=1 Yu is called the running average process.

E[X̄n] = E[Y] (74)

Var(X̄n) =
1
n

Var[Y]. (75)

7.1 Weak Law of Large Numbers

Definition 7.4 (Convergence in probability). A sequence (Wn : n ∈ N) of real random variables
converges in probability to a random variable W, if

sup
t>0

lim
n→∞

P{|Wn − W| ≥ t} = 0, ∀t > 0. (76)

Theorem 7.5 (Chebyshev’s weak LLN). Let Y ∈ L2 be a real random variable and (Yi : i ∈ N) are iid
copies of Y. Let X̄n = ∑n

i=1 Yi. Then

X̄n → EY in probability P (77)
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7.2 Strong Law of Large Numbers

Definition 7.6 (A.s. Convergence). Consider a sequence (Wn : n ∈ N) of real random variables. We say
that Wn → W almost surely, if when n → ∞,

P{w ∈ Ω : Wn(ω) → w(ω)} = 1. (78)

Equivalently,
P{lim sup

n→∞
|Wn → W| > 0} = 0. (79)

Remark.

Wn → W point-wise =⇒ Wn → W a.s. =⇒ Wn → W in P. (80)

Theorem 7.7 (Kolmogorov Strong LLN). Let Y ∈ L1 be a real random variable. Let (Yi : i ∈ N) be iid
copies of Y. Let X̄n = 1

n ∑n
i=1 Yi. Then X̄n → EY a.s. That is,

P{X̄n → EY} = 1. (81)

Theorem 7.8 (Cantelli Strong LLN). Assume Y ∈ L4. Then the previous theorem has a simpler proof :)

Proof. WLOG, assume EY = 0.

Lemma 1 (Borel Cantelli.). Let (An : n ∈ N) be events.

∞

∑
n=1

P(An) < ∞ implies P(lim sup
n→∞

An) = 0 (82)

Proof of the lemma.

lim sup
n→∞

An =
∞⋂

n=1

⋃
i≥n

Ai = event that Ai happens infinite times (83)

P(lim sup
n→∞

An) ≤ P(
⋃
i≥n

Ai), ∀n (84)

≤ ∑
i≥n

P(Ai) = 0, as n → ∞. (85)

Lemma 2 (Cartelli tail bound.). Assume EY = 0, µ = E|Y|4. Then ∀n ∈ N,

P{|X̄n| ≥ n−1/8} ≤ 3µn−3/2. (86)
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Cont. Define event An = {ω ∈ Ω : |X̄n(ω)| ≥ n−1/8}. Then

∞

∑
n=1

P(An) ≤
∞

∑
n=1

3µn−3/2 < ∞. (87)

Then using the Borel-Cantelli lemma.

P{lim sup
n→∞

|Xn| > 0} = 0. (88)

7.3 Concentration

The law of large numbers gives an asymptotic analysis for the limit of Xn = 1
n ∑n

i=1 Yi. However,
we also want nonasymptotic analysis for a fixed n.

Proposition 7.9 (Chebyshev). Let X ∈ L2, and σ =
√

Var(X),

P{|X − EX| ≥ σt} ≤ 1
t2 , ∀t > 0. (89)

• Chebyshev’s inequality gives weak controls on tail bound (t−2), but this is the best we could
get by assuming X ∈ L2 only.

Definition 7.10 (Moment generating function (mgf) and cumulant generating function (cgf)). Let X
be a real random variable. The moment generating function is defined as

mX(θ) := E[eθX], (90)

and the cumulant generating function

ξX(θ) := log E[eθX]. (91)

Proposition 7.11 (Laplace transform method). Let X be a real random variable. For all t ∈ R,

P{X ≥ t} ≤ inf
θ>0

exp(−θt + ξX(θ)) (92)

P{X ≤ t} ≤ inf
θ<0

exp(−θt + ξX(θ)). (93)

Proof Sketch. Simply apply Markov’s inequality to exp(θX).

Example. (Normal distribution) Recall that for Z ∼ N (0, σ2), we have ξZ(θ) =
σ2θ2

2 . Then

E{Z ≥ t} ≤ inf
θ>0

exp
(
−θt + σ2θ2/2

)
= exp

(
−t2/2σ2). (94)

Proposition 7.12 (Additivity of cgf). Let X = ∑i Yi for independent random variables Yi, then

ξX(θ) = ∑
i

ξYi(θ). (95)
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Thanks to the additivity of cgf, we can easily derive a tail bound for independent sums,

Theorem 7.13. Let X = ∑n
i=1 Yi for independent Yi.

P{X ≥ t} ≤ inf
θ>0

exp

(
−θt +

n

∑
i=1

ξYi(θ)

)
(96)

P{X ≤ t} ≤ inf
θ<0

exp

(
−θt +

n

∑
i=1

ξYi(θ)

)
(97)

Example. (Binomial) Let X ∼ Binomial(n, p), so X = ∑n
i=1 Yi where Yi ∼ Bern(p) iid.

ξYi(θ) ≤ p(eθ − 1). (98)

So we get (the Chernoff bound)

P{X ≥ tE[X]} ≤ inf
θ>0

exp
(
−np(θt − eθ + 1)

)
= exp(−np(t log t − t + 1)) =

( et−1

tt

)np
. (99)

Theorem 7.14 (Hoeffding’s theorem). For X = ∑n
i=1 Yi for independent bounded random variables

Yi ∈ [ai, bi]. Let σ =
√

∑n
i=1(bi − ai)2/2. Then

P{|X − EX| ≥ σt} ≤ 2 exp
(
−t2/2

)
(100)

Proof. We need a cgf bound for Yi. We find that ξYi(θ) ≤ (bi − ai)
2θ2/8. This is because

mYi(θ) = E[eθY] (101)

≤ E[ f (x)] = cosh
(

θ
b − a

2

)
(102)

where f (x) = (eθb−eθa)(x−a)
2(b−a) + e−θa so f (x) < eθx on [a, b]. Plug in ξYi = log mYi proves the theorem.

7.4 Weak convergence

Limit theorems in probability tell us when a sequence of random variables converges to a limiting
random variable. In this section, we consider describing when the distributions of the random
variables converge to a limiting distribution.

What does it mean for the distributions of random variables to converge?

Idea: Moments carry information about distributions.

µ(h) =
∫

R
h(x)µ(dx) (103)

If two measures µ, ν are close, then many moments are similar: µ(h) ≈ ν(h) for “many” h.
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Definition 7.15. A function h : R → R is bounded Lipschitz, if

∥h∥BL = max{∥h∥sup, ∥h∥Lip} < ∞, (104)

where
∥h∥sup = sup{|h(x)| : x ∈ R} (105)

and
∥h∥Lip = inf

L>0:|h(x)−h(y)|≤L|x−y|,∀x,y∈R
(106)

Remark. ∥ · ∥BL is a norm.

Proposition 7.16 (BL functions separate measures.). Let µ, ν be Borel probability measures on R.

Then µ = ν if and only if µ(h) = ν(h) for all bounded Lipschitz h : R → R.

Proof. The forward direction is trivial.

The reverse direction. Assume µ ̸= ν, then the cdf Fµ ̸= Fν, so there exists a ∈ R,

Fµ(a) ̸= Fν(a). (107)

Let us consider a series of BL functions:

hn(x) =


1, x ≤ a
0, x ≥ a + 1

n

1 − n(x − a), x ∈ (a, a + 1
n .

(108)

Using bounded convergence theorem (or dominated convergence), µ(hn) → Fµ(a) and ν(hn) →
Fν(a). Therefore, there exists n, such that µ(hn) ̸= ν(hn).

Definition 7.17 (Bounded Lipschitz metric). Let µ, ν be Borel probability measures on R. Define

dBL(µ, ν) := sup{|µ(h)− ν(h)| : ∥h∥BL ≤ 1}. (109)

Note: dBL is a metric on the probability measures on R, i.e.,

• dBL(µ, ν) = 0 if and only if µ = ν.

• dBL(µ, ν) = dBL(ν, µ).

• dBL(µ, ν) ≤ dBL(µ, ρ) + dBL(ρ, ν).

Definition 7.18 (Weak convergence). Let (µn : n ∈ N) be Borel probability measures on R, µ be a Borel
probability. We say µ converges weakly to µ, if

dBL(µn, µ) → 0 as n → ∞. (110)

Let (Xn : n → N) be real random variables and X be a real random variable. Then we say Xn weakly
converges to X, if µXn weakly converges to µX.
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Theorem 7.19. Let (µn : n ∈ N), µ be Borel probability measures on R. The following are equivalent:

• µn weakly converges to µ

• µn(h) → µ(h) for all bounded Lipschitz h : R → R.

• µn(h) → µ(h) for all bounded continuous h : R → R.

• The distribution function Fµn(a) converges to Fµ(a) for all a ∈ R where Fµ(a) us continuous.

• The characteristic function χµn → χµ point-wise, where

χW(θ) = E[eiθW ] (111)

Proposition 7.20. Xn → EY almost sure implies that Xn converges weakly to EY.

Definition 7.21 (Integral probability metric). Let H be a collection of functions from R → R. Define the
IPM related to H by

dH(µ, ν) = sup{|µ(h)− ν(h)| : h ∈ H}, (112)

for all Borel probability measure ν on R.

Remark.

• Different H gives different notions of distance

• If H ⊆ H′, then dH ≤ dH′

• dH is a metric if and only if H separates measures.

Examples

• Kolmogorov: H = {1(−∞,a] : a ∈ R}, which induces uniform convergence of cdfs.

• Total variation: H = {h : R → R : ∥h∥sup ≤ 1, h continuous} or H′ = {1B : B Borel}.

• Kantorovich Wasserstein-1 distance

H = {h : R → R : ∥h∥Lip ≤ 1} (113)

Convergence weakly and L1.

7.5 Central Limit Theorem

Let (Yi : i ∈ N) be iid copies of Y ∈ L2, then X̄n = 1
n ∑n

i=1 Yi converges almost surely to EY.

Idea: rescale X̄n to make its variance nontrivial. We define standardized sums

Tn :=
√

n
X̄n − EY√

Var(Y)
. (114)

It can be checked that ETn = 0 and Var(Tn) = 1.

24



Theorem 7.22 (Central Limit Theorem). Let (Yi : i ∈ N) be iid copies of Y ∈ L2. Define

Tn =
√

n
( X̄n − EY√

Var(Y)

)
∀n ∈ N. (115)

Then Tn weakly converges to N (0, 1) as n → ∞.

Remark.

• Historically, the central limit theorem is used to support asymptotic confidence intervals for
EY.

• Equivalent statements:

dBL(Tn, Z) = sup
∥h∥BL≤1

|Eh(Tn)− Eh(Z)| → ∞. (116)

Also equivalent to
P{Tn ≤ a} = FTn(a) → Φ(a), ∀a ∈ R, (117)

which is often called the convergence in distribution.

7.6 Nonasymptotic counterpart

Theorem 7.23 (Berry-Esseen). Let (Yi : i ∈ N) be iid copies of Y ∈ L3. Define

σ2 = Var(Y), and M3 = E|Y − EY|3. (118)

Let Yn be the standardized sum, then the Kolmogorov distance

dKol(Tn, Z) := sup
a∈R

|FTn(a)− Φ(a)| ≤ M3√
nσ3 , ∀n ∈ N. (119)

Proof of a weaker version by the Lindeberg exchange principle. The idea is to show for smooth func-
tions h : R → R,

Eh(Tn) = Eh(Z), by Taylor expansion. (120)

Lemma 3. Let (Y, Z) be L3 random variables with EY = EZ and EY2 = EZ2. Let h : R → R with
∥h(3)∥sup < ∞.

∥Eh(Y)− Eh(Z)∥ ≤ 1
6
∥h(3)∥sup(E|Y|3 + E|Z|3). (121)

Proof of Lemma.

h(t)− h(0)− th′(0)− t2

2
h′′(0) =

t3

6
h(3)(ξ), for some ξ ∈ [0, t]. (122)
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Then ∣∣∣E[h(Y)− h(0)− Yh′(0)− 1
2

Y2h′′(0)]
∣∣∣ ≤ 1

6
E|Y3|∥h(3)∥sup. (123)

The left hand side is1 the same for Y and Z, except for the first term, so

|Eh(Y)− Eh(Z)| ≤ 1
6
∥h(3)∥sup · (E|Y|3 + E|Z|3). (124)

Let Y1, . . . Yn and Z1, . . . , Zn be independent with EYi = EZi and EY2
i = EZ2

i . For f : Rn → R,
such that ∥∂iii f ∥sup < ∞, then

|E f (Y1, . . . , Yn)− E f (Z1, . . . , Zn)| ≤
1
6

n

∑
i=1

∥∂iii f ∥sup(E|Yi|3 + E|Zi|3). (125)

This is called the Lindeberg exchange theorem. To see this, let

Wi = (Y1, . . . , Yi, Zi+1, . . . , Zn). (126)

Then since W0 = (Z1, . . . , Zn) and Wn = (Y1, . . . , Yn),

|E f (Y)− E f (Z)| ≤
n

∑
i=1

|E f (Wi)− E f (Wi+1)| ≤
1
6

n

∑
i=1

∥∂iii f ∥sup(E|Yi|3 + E|Zi|3). (127)

Let Yi ∼ Y, Zi ∼ Z in L3 be independent random variables that are already standardized, i.e.,
EY = Z = 0 and Var(Y) = Var(Z) = 1. Let M = max{E|Y|3, E|Z|3} < ∞. Let h : R → R be
smooth. Define

f (X1, . . . , Xn) = h(
1√
n

n

∑
i=1

Xi), where X means Y, Z. (128)

∥∂iii f ∥sup ≤ n−3/2∥h(3)∥sup. Then applying the Lindeberg exchange principle,

|Eh(
1√
n

n

∑
i=1

Yi)− Eh(
1√
n

n

∑
i=1

Zi)| ≤
M

3
√

n
∥h(3)∥sup. (129)

Let
H = {h : R → R, ∥h(3)∥sup ≤ 1} (130)

dH(
1√
n ∑

i
Yi,

1
n ∑

i
Zi) ≤

M
3
√

n
. (131)

Issues:

• Where is the normal random variable?

Solution: Choose Zi ∼ N (0, 1), then we can compute 1√
n ∑n

i=1 Zi ∼ N (0, 1).
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• What is dH?

Solution: For each h : R → R with ∥h∥BL ≤ 1, we can smooth h to get a function hσ such that
∥h(3)σ ∥sup is bounded and ∥h − hσ∥sup is bounded, which implies

dBL(Tn, Y) ≤ CE(|Y|3)1/3

n1/6 → ∞, as n → ∞. (132)
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8 Conditional Expectation

If two random variables are dependent, by observing one, we can update our knowledge about
probabilities of events involving the other. In particular, we can update our “best guess” for the
expectation.

Fix a probability space (Ω,F , P). Let X ∈ L2(Ω.F , P).

Recall that Var(X) = E[(X − EX)2] = infa∈R ∥X − a∥2.

8.1 Conditional expectation in least squares

Consider a subspace in L2:

K0 = {Y ∈ L2(Ω,F , P) : Y(ω) = a, ∀ω ∈ Ω, a ∈ R}. (133)

K0 is a complete subspace in L2, so there is always a projection from L2 to K0, i.e.,

Y∗ = arg min
Y∈K0

E(X − Y)2 (134)

Now suppose we observe a random variable Z ∈ L2 and want to update our best guess of EX. We
first try an affine approximation:

min
Y

∥X − Y∥2, (135)

where Y ∈ K1.
K1 = {a + bZ : a, b ∈ R}. (136)

We can compute the optimal a, b given Var(X), Var(Z) and Cov(X, Z).

As K0 ⊂ K1, the error is no worse than Y = EX.

However, this affine function of Z is suboptimal (consider X = Z2). In general, we have to consider a
nonlinear function of Z.

Consider KZ = {h(Z) ∈ L2, h : R → R measurable}.

min ∥X − Y∥2, s.t. Y ∈ KZ. (137)

Recall that

Lemma 4. Y is σ(Z)-measurable, if and only if Y = h(Z) for some h : R → R measurable.

As a result, KZ is a complete subspace of L2, since

KZ = L2(Ω, σ(Z), P). (138)

Therefore, there exists an orthogonal projection of X to KZ. Moreover, it is unique almost sure.

We define this projection by E[X|Z].
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8.2 Conditioning on a σ-algebra

Consider conditioning on a σ-algebra: G ⊆ F . For each event G ∈ G, we can decide if ω ∈ G or
not.

Definition 8.1 (Conditional expectation in L2). Fix (Ω,F , P). Let G ⊆ F be a sub-σ-algebra on Ω.

For X ∈ L2(Ω,F , P),
min

Y
∥X − Y∥2, s.t. Y ∈ L2(Ω,G, P|G). (139)

A solution Y to this least square problem is the conditional expectation of X, given G, denoted as Y =
E[X | G].

Dual Characterization. (X − Y) ⊥ Z for all Z ∈ L2(Ω,G, PG).

Remarks.

• Y = E[X | G] is a random variable on the sample space. Value is determined, once given 1G
for all G ∈ G.

• For random variables Z, E[X | Z] := E[X | σ(Z)].

• For an event E, E[X | E] := E[X | σ(E)]. The conditional expectation must be Y = a1E + b1EC .

The optimal value of a, b is a = E[X1E]
P(E) and b =

E[X1EC ]

P[EC ]
.

8.3 Characteristic properties of conditional expectation

Let G1, . . . , Gn be a disjoint cover of Ω, G = σ(G1, G2, . . . , Gn). Let Y = E[X | G].
Measurability: Y is a constant on each minimal event Gi. Therefore, Y is G-measurable, i.e.,
Y−1(B) ∈ G, for all Borel B.

Consistency: Average of Y on events in G equals the average of X on the event.

E[X1G] = E[Y1G], ∀G ∈ G. (140)

This is also often called the coarse-graining property.

Proof.
⟨X − Y, W⟩ = 0, ∀W ∈ L2(Ω,G, P). (141)

Then E[XW] = E[YW]. Since 1G is measurable in G, the statement is proved.

8.4 Conditional expectation in L1

So far we have only defined conditional expectation in L2. How can we make it work if it only
belongs to L1?
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Definition 8.2 (Kolmogorov, 1933). Let (Ω,F , P) be a probability space. Let G ∈ F be a σ-algebra on Ω.
Let X ∈ L1(Ω,F , P). A real random variable Y is a version of E[X | G] if

• Y is integrable: Y ∈ L1(Ω,F , P)

• Y is G-measurable

• Consistency: E[Y1G] = E[X1G] for all G ∈ G.

Theorem 8.3 (Fundamental theorem of conditional expectation). There exists a version Y of the
conditional expectation E[X | G]. If Y′ is a another version, then P[Y = Y′] = 1.

Proof Sketch. Existence. WLOG assume X ≥ 0. Let Xn(ω) = min{X(ω), n}.

Xn is positive, bounded, F -measurable, and mono-increasingly converges to X point-wise.

Xn bounded implies that Xn ∈ L2, so we can compute its conditional expectation Yn = E[Xn | G].
We can check that Y1 ≤ Y2 ≤ · · · ≤ Yn. Define

Y(ω) = lim sup
n→∞

Yn(ω) for ω ∈ Ω. (142)

By monotone convergence theorem, E[Y] = limn→∞ E[Yn] = limn→∞ E[Xn] = E[X] < ∞. Follow-
ing a similar argument, E[Y1G] = E[X1G] for all G ∈ G.

Moreover, Y = lim supn→∞ Yn is G-measurable, since Yn are measurable.

Uniqueness. Assume Y, Y′ are both versions of conditional expectations. By consistency E[(Y −
Y′)1G] = 0 for all G ∈ G. For contradiction, assume P{Y > Y′} > 0.

Let En = {Y > Y′ + 1/n}, which are G-measurable events. En mono-increasing converges to
E = {Y > Y′}. This means P(En) mono-increasingly converges to P{Y > Y′} > 0. Therefore,
there exists n ∈ N, such that E[(Y − Y′)En] >

1
n P(En) > 0, contradiction.

Proposition 8.4 (Conditional expectation is an expectation.). Conditional expectation satisfies the same
properties as expectation.

• Unital and positive.

• Conditional expectation is linear.

• Monotonic. If X ≤ Y a.s., then E[X | G] ≤ E[Y | G] a.s.

• Jenson’s inequality holds: E[φ(x) | G] ≥ φ(E[X | G]) a.s for convex φ.

8.5 Convergence theorems

Theorem 8.5 (Conditional Monotonic convergence). Suppose 0 ≤ Xn ↑ X a.s. where X ∈ L1. Then

E[Xn | G] ↑ E[X | G] a.s. (143)

Proposition 8.6. Some properties for conditional expectation:
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• Expectation: If Y = E[X | G], then E[X] = E[Y]

• Full knowledge: If X is G-measurable, then E[X | G] = X a.s.

• Independence: If σ(X) independence of G, then E[X | G], then E[X | G] = E[X] a.s.

• Pull-through: If Z is bounded and G-measurable, then E[XZ | G] = E[X | G]Z, a.s.

• Tower: If G ⊆ H ⊆ F are increasing σ-algebras. Then

E[E[X | H] | G] = E[X | G], a.s. (144)

Conditional integration:

E[h(X)|G](ω) =
∫

h(x)µX|G(dx|ω), a.s. (145)

8.6 Gaussian and conditioning

Definition 8.7 (Multivariate normal random variable). X = (X1, . . . , Xn) is a multivariate normal
random vector if it is an affine function of a standard normal vector Z = (Z1, . . . , Zn).

X = m + ΣZ, (146)

where m ∈ Rn and Σ ∈ Rn×n.

Remark.

• E[Xi] = mi, Cov(Xi, Xj) = Cij, where C = ΣΣ∗ ⪰ 0.

• We denote X ∼ N (m, C), as m, C uniquely determine a multivariate normal random variable.

Definition 8.8 (Multivariate characteristic function). Let X be a random vector on Rn. The characteristic
function of X is χ : Rn → C

χX(θ) := E[eiθTX] (147)

We can check that if Y = AX + b, then

χY(θ) = eiθTbχX(A∗θ). (148)

If X, Y are independent random vectors on Rn, then

χX+Y(θ) = χX(θ)χY(θ). (149)

It is easy to check that for X = m + ΣZ,

χX(θ) = eiθTme(−∥Σ∗θ∥2
2/2) = exp

(
iθTm − θTCθ

2

)
. (150)

Theorem 8.9. Suppose X are random vectors taking values in Rn, then the laws of X and Y are the same if
and only if the characteristic functions are the same.

Theorem 8.10 (Linear marginals). A random vector X on Rn is normal if and only if ⟨a, X⟩ is a real
normal random variable for every a ∈ Rn.
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8.6.1 Gaussian conditioning

Let (X, Y) ∈ Rn+1 be multivariate normal distribution. Y = (Y1, . . . , Yn). Assume E[X] = 0 and
E[Y] = 0.

We want to find the best approximation of X as a linear function of Y:

min
a∈Rn

∥X − ⟨a, Y⟩∥2. (151)

We define cXX = Var(X), cXY = Cov(X, Y) ∈ Rn, and CYY = Cov(Y, Y) ∈ Rn×n.

Then
E[(X − ⟨a, Y⟩)2] = cXX − 2⟨a, cXY⟩+ aTCYYa. (152)

By taking the derivative with respect to a,

a = C−1
YYcXY (153)

The best approximation is thus
X̂ = ⟨a, Y⟩ = cT

XYC−1
YYY. (154)

This means that
X − X̂ ⊥ span(Y1, . . . , Yn). (155)

Then, Cov(X − X̂, Y) = 0. Specifically, for normal distributions, uncorrelation means independence
(which can be shown using characteristic functions as normal random variables are determined by
covariance).

Theorem 8.11 (Gaussian conditional expectation.). Different from general random variables, linear
functions ⟨a, Y⟩ gives full information for conditioning.

E[X|Y] = X̂ = cXYC−1
YYY. (156)

Proof.

E[X|Y] = E[(X − X̂) + X̂|Y]
= E[X − X̂|Y] + E[X̂|Y].
= E[X − X̂] + X̂. (independence and full information)

= X̂.
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9 Martingales

Recall that a σ-algebra captures information about the world. A bigger σ-algebra includes more
knowledge.

A filtration is a mathematical model for accumulating information.

9.1 Filtration

Definition 9.1 (Filtration). Let (Ω,F , P) be a probability space. A (discrete-time) filtration is a sequence
of increasing σ-algebras on Ω:

F0 ⊆ F1 ⊆ · · · ⊆ F∞ ⊆ F . (157)

Commonly, define F0 = {∅, Ω},F∞ = σ(
⋃∞

k=1 Fk).

Examples.

Let Z0, Z1, . . . , Zn be real random variables, and Fk = σ(Z0, . . . , Zk). Then {Fk} is a filtration.

Definition 9.2 (Adapted process). A sequence (X0, X1, . . . ) of real random variables is adapted to the
filtration (Fk : k ∈ Z+) if each Xk is Fk-measurable.

In other words, at time k, the value of Xk is determined by the information we have.

9.2 Defining Martingales

Definition 9.3 (Martingales (Informal)). A martingale is an adapted process that is indifferent about the
future.

That is, for n ≥ k, E[Xn | Fk] = Xk.

Definition 9.4 (Martingales (Formal)). Let (Ω,F , P) be a probability space, and a filtration F0 ⊆ F1 ⊆
· · · ⊆ F∞. An sequence of real random variables (Xi : i ∈ Z+) is a martingale if

• Adapted: (Xk) is adapted to the filtration (Fk)

• Integrable: E|Xk| < ∞, for each k.

• Status Quo: E[Xk+1|Fk] = Xk almost sure for each k.

We can relax the third property to E[Xk+1|Fk] ≤ Xk a.s., in which (Xk) is called a supermartingale.

E[Xk+1|Fk] ≥ Xk a.s. is called a submartingale.

This seemingly awkward terminology comes from the super/sub-harmonic function of Markov chains.

Examples. Independent sums of centered random variables, Random walks, Levy-Doob process.

33



9.3 Formal model for Gambling strategies

Definition 9.5 (Previsible process.). A sequence of real random variables (C1, C2, . . . , ) is a previsible
with respect to the filtration (Fk) if ck is Fk−1-measurable for all k ∈ N.

When you play a game of chance, you bet before the game.

Definition 9.6 (Martingale transform). Let (Xk) be a martingale and (Ck : k ∈ N) be a previsible
sequence. The martingale transform is the sequence

(C · X)k =
k

∑
i=1

Ci(Xi − Xi−1), for k = 1, 2, . . . . (158)

Remark. You bet Ci units of capital on a fair game (martingale). Then you win Ci(Xi − Xi−1) on
the i-th day. The total winnings after k plays is

(C · X)k =
k

∑
i=1

Ci(Xi − Xi−1). (159)

Proposition 9.7 (Martingale transform.). Let (Xk : k ∈ Z+) be a martingale and (Ck : k ∈ N) be a
previsible process that are bounded. Then

((C · X)k : k ∈ Z+) (160)

is a null martingale, i.e., (C · X)0 = 0.

Proof. Pull-through property:

E[(C · X)k+1 − (C · X)k|Fk] = E[Ck+1(Xk+1 − Xk)|Fk] = Ck+1E[Xk+1 − Xk|Fk] = 0. (161)

Since (C · X)k is Fk measurable,

E[(C · X)k+1|Fk] = (C · X)k. (162)

We interpret this proposition: No sequence of bounded bets allows you to beat a fair game.

Another question is: can you quit the game when you are ahead to get advantages in a fair game?

Definition 9.8 (Stopping times). A random variable τ : Ω → Z+ ∪ {+∞} is a stopping time, if {τ ≤ k}
is Fk measurable for each k ∈ Z+.

Remark. The meaning of this definition is that after game k, you have enough information to
decide whether the stopping criterion is triggered.
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Definition 9.9 (Stopped process). Let (Xk) be an adapted process and τ be a stopping time. The stopped
process is the sequence

(Xk∧τ : k ∈ Z+), where k ∧ τ = min{k, τ}. (163)

The idea of this definition is that your winnings freeze after you stop gambling.

Definition 9.10 (Stopped martingales.). If (Xk) is a martingale, τ is the stopping time, then the stopped
process (Xk∧τ) is a martingale.

Remark. This means you cannot gain an advantage in a fair game by quitting strategically.

Proof. Consider a previsible process (Ck : k ∈ N),

Ck =

{
1, k ≤ τ,
0, k > τ.

(164)

Since Ck is previsible and bounded, the martingale (C · X)k is a martingale with an initial value 0.
This means

(C · X)k =
k

∑
i=1

Ci(Xi − Xi−1) =
k∧τ

∑
i=1

(Xi − Xi−1) = Xk∧τ − X0. (165)

Therefore,
E[Xk∧τ|Fk] = X0. (166)

Warning: It is not true that E[Xτ] = E[X0] as τ is a random variable dependent on the outcomes of
(Xk). For example, we stop when Xk ≥ 1, then E[Xτ] ≥ 1.

However, with the following theorem, we circumvent this paradox by restricting the horizon of
our game plays.

Theorem 9.11 (Optional stopping). Let (Xk) be a martingale. and τ be a stopping time. If τ ≤ B for a
fixed B almost surely, then

E[Xτ] = E[X0]. (167)

Proof. By the proposition on the stopped martingales,

E[X0] = E[Xk∧τ] for each k (168)

Choose k = B, so
E[X0] = E[XB∧τ] = E[Xτ]. (169)
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9.4 Convergence of martingales

Martingales are flavored by probability theorists because they converge to a stable equilibrium
under weak assumptions.

Theorem 9.12 (Doob’s convergence theorem). Let (Xk : k ∈ Z+) be a martingale sequence that is
uniformly bounded in L1, i.e., there exists a positive R, such that E[|Xk|] ≤ R for all k ∈ Z+.

Then almost surely, X∞(ω) := limk→∞ Xk(ω) exists, and is finite. That is, Xk converges to X∞ almost
surely.

Remark. It is not true in general that E[Xk] converges to E[X∞].

Lemma 5 (Interval sandwich). A nonrandom real-valued sequence (xk) fails to converge if and only if

lim inf
k→∞

xk < a < b < lim sup
k→∞

xk, (170)

for some a, b ∈ Q.

We define “upcrossing” of a sequence to an interval.

Definition 9.13. Let (xk) be a nonrandom real sequence. Fix a < b. The number uNa, b of upcrossings
before time N is the largest m, such that

0 ≤ s1 ≤ t1 < s2 < t2 < · · · < sm < tm ≤ N, (171)

where xsi < a and xti > b.

The total number of upcrossings:

u∞[a, b] = lim
N→∞

uN [a, b]. (172)

Lemma 6. Equation (171) implies u∞[a, b] = ∞. If u∞[a, b] is finite for all rational pairs (a, b) with a < b,
then (xk) converges in R.

9.4.1 Proof of Doob’s convergence

Idea: if a martingale crosses an interval [a, b] infinitely times, we can make money by betting on the
upcrossings. This is impossible.

Specifically, we keep betting below b, and start betting when xk gets below a. We formalize it as
below.

Fix a < b. Let c1 = 1{x0 < a}.

Let ck = 1{ck−1 = 1, xk−1 ≤ b}+ 1{ck−1 = 0, xk−1 < a}.

We can check that (ck) is positive, bounded, and previsible. Then the martingale transform
Yk = (C · X)k is a null-martingale.
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Define UN [a, b](ω) as the number of upcrossings of [a, b] up to time N by the sample path Xk(ω),
and U∞[a, b](ω) = limN→∞ UN [a, b](ω).

Note that
YN(ω) ≥ (b − a)UN [a, b](ω)− (XN(ω)− a) (173)

Since E[Yn] = 0, so we have the following proposition:

Proposition 9.14 (Snell upcrossing inequality). Let (Xk) be a martingale and a < b be real numbers.

(b − a)E[UN [a, b]] ≤ E[(XN − a)] (174)

As E[|XN |] ≤ R, then for any a < b,

P{U∞[a, b] = ∞} = 0. (175)

Define an event E = {ω : Xk(ω) does not converge in R},

E =
⋃

a<b,a,b∈Q

{ω : lim inf xk < a < b < lim sup xk} ⊆
⋃

a<b,a,b∈Q

{ω : U∞[a, b] = ∞}. (176)

Therefore, P(E), because rational number set Q is countable. Thus, X∞(ω) = limk→∞ Xk(ω) with
probability 1. Moreover,

E|X∞| = E[lim inf
k→∞

|Xk|] ≤ lim inf
k→∞

E|Xk| ≤ R. (177)

9.5 Concentration inequalities for martingales

What is the probability that a martingale ever deviates much from its mean value?

Begin with submartingales: E[Xk+1|Fk] ≥ Xk a.s.

Theorem 9.15 (Doob’s maximal inequality for submartingales). Consider a positive submartingale
(Xk : k ∈ Z+). For each N ∈ Z+,

P{ sup
0≤k≤N

Xk > t} ≤ EXN

t
. (178)

Moreover, if Xn → X∞ in L1, then it’s true for N = ∞.

Remark. Though this statement looks like Markov’s inequality, we cannot derive it directly from
Markov’s inequality.

Proof. We want to bound the probability that the martingale escapes a band. We define the stopping
time τ : Ω → Z+ ∪ {∞},

τ := inf{k ≤ N : Xk > t}. (179)

Therefore, the event
E := {sup

k≤N
Xk > t} = {τ < ∞}. (180)
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Then,

EXN ≥ EXN∧τ

≥ E[XN∧τ1E]

= E[Xτ1E]

> tP[E] (181)

Therefore,

P(sup
k≤N

Xk > t) ≤ E[XN ]

t
. (182)

Moreover, EN := {supk≤N Xk > t} mono-increasingly converges to E∞, and EXN → E[X∞] by L1
convergence. By dominated convergence theorem the statement holds for N = ∞.

Proposition 9.16 (Martingale: convex transformation.). Consider a martingale (Mk : k ∈ Z+). For
any convex function φ : R → R, the sequence

Xk := φ(Mk) (183)

is a submartingale, provided that E|Xk| < ∞.

Proof. By conditional Jensen’s inequality.

We can then generalize Chebyshev’s inequality to Martingales,

Theorem 9.17 (Kolmogorov’s inequality). Let (Mk : k ∈ Z+) be a martingale in L2. For N ∈ Z+,

P{max
k≤N

(Xk − EXk)
2 > t} ≤ Var[XN ]

t
. (184)

Proof. The sequence (Xk − EXk) is an L2 martingale, so (Xk − EXk)
2 is a submartingale, due to

Proposition 9.16. Using Doob’s maximal inequality the statement follows.

Remark. Define ∆k = Xk − Xk−1. Then

Var[Xn] =
N

∑
k=1

E[∆2
k ]. (185)

Proposition 9.18 (Exponential maximal inequality). Let (Xk : k ∈ Z+) be a bounded martingale. For
N ∈ Z+,

P{max
k≤N

Xk > t} ≤ inf
θ>0

exp(−θt + ξXN (θ)), (186)

where ξX(θ) = log EeθX is the cgf of X.

Theorem 9.19 (Azuma-Hoeffding: uniform version). Consider a martingale (Xk : k ∈ Z+) whose
difference sequence ∆k := Xk − Xk−1 is bounded, |∆k| ≤ ak. Let the variance proxy νN := ∑N

k=1 a2
k .

P{max
k≤N

|Xk − X0| > t} ≤ 2 exp
(
−t2/2νN

)
. (187)
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Proof. Hoeffding lemma: If Y is a real random variable with EY = 0, |Y| ≤ a, then its mgf
ξY(θ) ≤ 1

2 θ2a2. As XN − X0 = ∑N
k=1 ∆k,

mXN−X0(θ) = E[eθ∆N . . . eθ∆1 ]

= E[E[eθ∆N |FN−1 ]eθ∆N−1 . . . eθ∆1 ]

≤ eθ2∆N/2E[eθ∆N−1 . . . eθ∆1 ]

≤ · · · ≤ eθ2νN/2. (188)

Therefore,

ξXN−X0(θ) ≤
1
2

θ2νN . (189)

Using this result with θ = t/νn in the Exponential maximal inequality proves the theorem.

Theorem 9.20 (Ville’s inequality). Let (Xk : k ∈ Z+) be a positive supermartingale. Then

P{ sup
k∈Z+

Xk > t} ≤ EX0

t
. (190)
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