
Computer Architecture Final Exam

Performance metrics:
Clock cycle time CCT = 1/Clock Frequency
IC: Instruction Count; CPI: Cycle per instruction
Execution time = Num Cycles × CCT = IC × CPI × CCT

• Latency, Throughput:
• Inter-task parallel only improves throughput;
• Intra-task parallel improves both

Power and Energy

• Dynamic power: CV 2
ddf

• Static power: VddIleakage

Power limited by infrastructure, its density limited by thermal
dissipation, energy limited by battery capacity.
Scalability: Amdahl’s law
Speedup = ((1− f) + f × 1

S
)−1 = (1− f + f

S
)−1

Means: amean for absolutes; hmean for rates; gmean for ratios

Metrics

Calling Convention
Control: jump and link; return: jr ra
Register convention: caller saved: ra, t, a;
callee saved: sp, s.
Switch case with jump tables: compute and use jump register.
Short constants directly use immediates, large constants takes
more steps to create.
Encoding: R,I,S,B,J,U

• Designed mostly consistent with each other, reduce hard-
ware overhead; quickly extract which registers to read

• Branch: small distance (13); jump for long distance

Parallelism
SIMD: Data-level, increase processing throughput, amortize
instruction cost.
MIMD: Thread-level. Shared-memory multi-core processors.
Data race: solved by atomic instructions.

ISA

CPI = 1, but long critical path, hardware underutilized.
Pipeline: f = (tcomb

k
+tsetup)−1, also latency tcomb+k×tsetup

getting worse.
Balanced: Pipeline throughput is limited by the slowest stage.
Miminize register width: where to partition the combinational
logic.

Single Cycle Processor

IF, ID, EX, MEM, WB. Reasons:

• Roughly balanced in latency
• Natural functionality, with small amount of signals

across stages
• Not too many stages with too high register latency

overheads

Control: Propagate control signals until consumed.

CPI = base CPI + stalls per instruction.
Stalls are caused by structural, data or control hazard.
Structural: Instructions always use each resource once and in
the same stage, e.g. half cycle Read/write; writeback at 5-stage.
Data: Only Read after write hazard.
Forwarding: reduce all R-format, 1-stall for load-use.
Compiler optimizations: filling load delay slots with indepen-
dent instructions.
Control: Put branch, jump to ID stage.
Branch prediction at IF stage. (BHT saturate counter+ BTB)
Exceptions and Interrupts
goto OS handler. Save PC and exception/interrupt reasons.
Precise Exception: All previous instructions completed, no of-
fending instruction and the following instructions were started.
ILP = T1/T∞. ILP is scope dependent: Larger instruction
scheduling windows or Out-of-order execution.
Renaming solves all WAW, WAR dependencies.
WAR: 2 completes not before 1 dispatches.
WAW: 2 completes not before 1 completes.
Fetch, Decode, Dispatch/Rename, Issue, Execute, Commit

Pipeline Processor and advanced

Cache Banking: each bank is like an individual cache
block address determines which bank a block should be stored:
Tag + Index + Bank ID + offset.
A block can be in any way of a set, but only go to one bank.
Shared data in private caches: cache coherence issues. Use
protocols such as single-writer multiple-read(SWMR).
3-state protocol Modified/Shared/Invalid. M: one cache has
valid and latest copy, and can write. S: caches and memory
have valid copy.
Cache optimization: Non-blocking

• Allow for hits while serving a miss (hit-under-miss)
• Allow for hits to pending misses (hit-to-miss)
• Allow more than one miss (miss-under-miss)

Cache optimization: Data Prefetching
Predict and prefetch: reduce cold misses
Extra stream buffers to hold the prefetched data
Use Miss Status Handling Register (MSHR) keep track of miss
Other optimization: Loop reordering, loop blocking (split
matrix to small pieces)

Cache Hierarchy & Main memory

Memory hierarchy: appear to be large and fast
Virtual memory: appear to be contiguous and private
Locality: programs work on a small portion of data at any
time. Temporal vs. Spatial
Memory hierarchy: holds more-often-access data on smaller
and nearer devices
Cache:
Data transferred in unit of cachelines.
Cache hit: Latency = time to access cache, so average memory
access time: AMAT = hit latency + miss rate × miss penalty
Miss reasons: compulsory/cold, capacity, conflict
Tradeoff of block size: increasing miss penalty convex miss rate.
Exploit spatial locality when size is small, sacrifice temporal lo-
cality when size is large with small number of blocks.
Direct mapped:
Index: the only choice for each location - middle n−m bits.
Tag: identify which the exact location - upper 32− n bits.
The rest m bits for each 2m bytes block.
Cache entry = data block + tag + metadata.
Overhead = tags + metadata = (1 + 32− n)× 2n−m

Total storage = (2m ∗ 8 + 1 + 32− n) ∗ 2n−m.
N-way set associative cache: to reduce conflict misses
Index n−m− w bits, tag 32− n + w bits. Replacement.
Write policies: write through vs. write back
write back: maintain a dirty bit, write back to memory when
dirty data is replaced. Use write buffer to avoid stalls for write-
through.

Cache

DRAM Bank: A cell array: 2n × 2m 2D array
IO width: w bits. Row buffer: 2m × w bits. Each access:

• Activate: transfer an entire row to row buffer
• Read/Write: Read or write columns in row buffer
• Precharge: Clean up row buffer for next Activate

Three cases: row miss, row hit and row conflict.
Closed-page vs. Open-page policy (Precharge or not).
Bank-level parallelism: multiple banks on one chip. Spread
access to different banks, overlap latencies
Dual Inline Memory Module: multiple narrow-IO chips
form a wide interface. Same latency; higher capacity and
bandwidth, but higher power; fixed granularity.
Channel-level parallelism: multiple independent channels.
Non-uniform memory access.

DRAM & Main memory

1

By memory hierarchy with caches, fix memory latency problem.
A large contiguous, private memory illusion→ Virtual memory.
Virtual Memory: a level of indirection through a page table
Physical memory shared by virtual memories.
Page table: a page table base register
One page table entry (PTE) per virtual page number

Synonym: a process with different virtual addresses point to
a same physical address. Copy: only change frame number and
mark the page as write-protected.
Homonym: different processes can use the same virtual ad-
dress but point to different physical addresses.
Page sharing: different processes can share a page by setting
virtual addresses to point to the same physical address.
Table size: Virtual addresses N bits, pages 4KB. Then total
number of pages: 2N−12, total page table size: 2N−12×PTE
size. (May be to big for memory). This is proportional to
virtual address size but not physical address size.
Solution: hierarchical page table, only top level must be
stored in memory. (A sparse tree that save page table size).
TLB: (translation look-aside buffer) caches for page table.
Issue 1 Context Switching: add a process ID (PID) in each
TLB entry, allows entries from multiple processes to co-exist
Issue 2 Limited TLB Reach: solved by multi-level TLBs, larger
pages or multiple page sizes.
If cache physically tagged and indexed, not parallel. If virtually
indexed, translation & cache access in parallel.

Virtual Memory

Hard Disk Organization Disk → platters
2→ surfaces →

tracks → sectors
Access time: Control + queuing + seek time (move head to
track)+ rotational latency + data transfer time
Small data: dominated by seek time and rotational latency
Data locality and OS scheduling: better performance since
large sequential access amortizes seek and rotational overheads
Solid State Disks (SSD or flash):

• Data are read/written in units of pages.
• To write new data, must erase first (in units of blocks).
• A block wears out after certain number of writes.
• No in-place modification in SSD/Flash.
• FTL: maintain logical to physical page mapping.

Disks

Software interfaces: register-based, memory-mapped I/O
Hardware designs: buses, switched interconnects

Register Interface
Data registers: TxD, RxD
Command/status registers: Rd, Wr (control), TxRdy, RxRdy
(status), ECC(errors)
Memory-Mapped IO:
Physical address space assigned to each I/O device. This I/O
address space is protected by the address translation mecha-
nism. (Must ask OS to map the I/O addresses to its virtual
memory space)

Bus
Master-slave arrangement. For multiple masters, arbitration
is used: one device granted access at any time.
Typical buses: processor-memory, processor-processor; I/O bu-
ses connect devices to the processor-memory bus.
Synchronous vs. Asynchronous
Data skew: clock different between two parallel clock signals
Clock cycle time must � skew time, limits bus frequency.
Serial bus use a single wire but with no data skew. (higher
frequency but needs (de)serialize data and commands)
Pipelined bus pipeline request and response.
Split-transaction bus allows out of order response.
IO Notification: Polling or interrupt

• Polling: check a status register periodically
• Works great if I/O rate fixed or needs frequent attention
• Interrupt works best when I/O rate is unpredictable

Direct Memory Access
Achieves large data transfer without bothering the processor,
DMA works as an I/O device itself.
Issue 1: OS may swap pages out to disk. Solution: memory
pinning
Issue 2: contiguous virtual address may not be physically con-
tiguous!
Solution 1: chain series of single-page requests; single interrupt
at the end
Solution 2: DMA engine uses virtual addresses
Issue 3: data involved in DMA may reside in processor cache
Hardware routes memory accesses for I/O through cache

I/O

Software Interface

Hardware designs

GPU Thread Model
Single program, multiple data (SPMD)
Single instruction, multiple threads (SIMT)

GPU provides Offloading Computation, introducing data
transfer overhead.
GPU characteristics:
Larger register files, Smaller and shallow cache hierarchy.
Throughput-oriented, Latency is less a concern than bandwidth
Main memory: limited capacity, but extremely high bandwidth

GPU

Tradeoff: Flexibility vs. Efficiency
Memory access: Maximize reuse using buffer.
Line buffer for image processing;
Double buffer: two banks switch roles between fetching data
from memory and serving data to computation.

Custom Hardware

1. Parallelism: multi-core processors, pipeline processor,
channels/banks of DRAM
2. Pipeline: Higher Throughput but increased latency
3. Out-of-order Execution: dynamically discover paralle-
lism.
4. Speculation: beyond dependency, guess the output. Must
also include: checking and recovering. E.g., Branch prediction,
Data prefetch.
5. Locality→ Caching: Instruction/data cache, translations
(TLB)
6. Indirection: Virtual address, Flash Translation (FTL),
Renaming OoO
7. Amortization: Cacheline access, domain-specific designs.
8. Common case fast: optimize the dominant portion, but
do not over optimize (Amdahl’s law)

Summary

2

