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1 Probability Bounds

Markov Inequality

For a nonnegative random variable X, for any k > 0,

Pr(X ≥ k) ≤ E(X)

k
(1)

If we have the variance of a random variable, we can apply more detailed analyses:

Chebyshev Inequality

Let X be a random variable with E(X) = µ and Var(X) = σ2, then

Pr(|X− µ| ≥ t) ≤ σ2

t2 . (2)

The proof is straightforward after applying Markov inequality to |X− µ|.
Chernoff Bound

Let Wi be independent random variables. W = W1 + · · · + Wn. Chernoff bound takes
advantage of higher-order conditions of independent variables. For Bernoulli random
variables with probability p,

Pr(W ≥ (1 + δ)E[W]) ≤
(

eδ

(1 + δ)δ

)µ

(3)

For Xi ∈ [0, 1]

[Pr(X ≥ (1+ δ)µ)] ≤ exp−
δ2µ

3 , [Pr(X ≤ (1− δ)µ)] ≤ exp−
δ2µ

2 , Pr[X ≥ R] ≤ exp−R, for R ≥ 5µ
(4)

The proof is by considering the random variable etW , which contains higher-order informa-
tion of W.

1.1 An Example: Median Finding

Goal:

• Input a set S of integers

• Find the median m ∈ S: at least ⌈ n
2 ⌉ elements ≤ m and at least ⌊ n

2 ⌋+ 1 elements ≥ m.
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We want to find d, u ∈ S, such that d ≤ m ≤ u, with C = {s ∈ S, d ≤ s ≤ u} small enough.
Specifically, we do

• Count number of elements in S larger than u, and smaller than d.

• Sort C in O(|C| log |C|) = o(n) time.

• Deduce the median.

How to choose C? We first select a multi-set R of n3/4 elements iid from S, and sort R.

• Let d be the 1
2 n3/4 −

√
n smallest element and u be the 1

2 n3/4 +
√

n smallest one.

• Compute C, Ld = {s ∈ S, s < d}, Lu = {s ∈ S, s > u}. If |Ld| or |Lu| ≥ n
2 , we fail. If

|C| > 4n3/4, we fail.

• Otherwise, we sort C and return the n
2 − |Ld| smallest element in C.

The runtime is O(n) indeed, but we have to bound the probability of failure.

Y1 = 1{|{r ∈ R : r ≤ m}| < 1
2 n3/4 −

√
n}. If Y1 = 0, then |Ld| ≤ 1

2 .

Y2 = 1{|{r ∈ R : r ≥ m}| < 1
2 n3/4 −

√
n}. If Y2 = 0 then |Lu| ≤ 1

2 .

Y3 = 1{|C| > 4n3/4}.
Pr(Y1 = 1) ≤ 1

4n1/4 by applying Chebyshev bound. (Could get better bound if using
Chernoff bound?)

Pr(Y3 = 1) ≤ 1
2n1/4 . Either 2n3/4 elements larger than m or 2n3/4 elements smaller than

m. Suppose the first happens, then R has at least 1
2 n3/4 −

√
n samples that are among the

1
2 n− 2n3/4 largest elements in S. (Consider the rightmost interval in R.) Let R = {ai}n3/4

i=1 ,
and Xi = 1 if ai is larger than the 1

2 n + 2n3/4 element. E(Xi) = 1
2 − 2n−1/4. E(∑ Xi) =

1
2 n3/4 − 2

√
n. Then

Pr

(
n3/4

∑
i=1

Xi ≥
1
2

n3/4 −
√

n

)
≤ 1

2
n−1/4 (5)

By union bound, we fail with probability less than n−1/4.
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2 Flows

A graph G = (V, E). Compute its maximal flow.

Ford-Fulkerson algorithm O(mF), where F = C · ∆s, C is the largest flow capacity.

Edmands Karp O(m2n).

Theorem 2.1. The maximal flow from s to t equals the min-cut that separates s, t.

Note: Recursively reducing paths from s to t gives the maximal flow. In the end s and t
will be disconnected, which naturally yields the solution for a Min-Cut.

2.1 Applications

Bipartite Matching Using max-flow algorithms to find maximum matching for bipartite
matching.

Theorem 2.2 (Hall). A bipartite graph has a perfect matching iff ∀S ⊆ L or S ⊆ R, |Γ(S)| ≥ |S|,
where Γ(S) is the set of neighbors of S.

Image Segmentation Let fi be the cost of assigning pixel i to the foreground. bi is the cost
of assigning it to the background. And sij is the cost of separating i and j.

min
S

cost(S) = ∑
i∈S

fi + ∑
i∈SC

bi + ∑
i∈S,j∈SC

sij (6)

This can be translated into a s, t Min-cut problem.

2.2 Min-Cut

Instead of finding an (s, t)- Min-Cut, we find an (S, SC) partition of vertices V.

Karger’s randomized algorithm

Repeatedly contract two nodes together, randomly, until only two supernodes are left. The
runtime would be O(n2). (O(n) for each edge contraction.)

This randomized algorithm returns the correct answer with probability

p ≥ 1
(n

2)
(7)

Repeat n2 log n time, so the overall runtime would be O(n4 log n) time to achieve a O(1/nc)
failure probability.
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Proof Sketch. When there are t supernodes left, we have

Pr
[
e ∈ δ(S, SC)

]
≤ 2

t
(8)

This is because each node must have degree ≥ k if the minimum cut is k.

Then we multiply the probability together, which yields the final bound.

Corollary 2.3. There are at most (n
2) number of min-cuts in a graph.

2.3 Complexity classes of BPP: randomized poly time

A randomized algorithm that runs in poly(n) time, with correct probability ≥ 2
3 for any

input x.

Boosting: Run an algorithm in BPP n times independently and take a majority vote, then
by Chernoff bound,

Pr[Correct] ≥ 1− exp
(
− n

48

)
. (9)
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3 Streaming Algorithms

Inputs coming in consistently. Cannot store all data. Need an online algorithm to deal with
incoming data.

Setup.

Inputs: σ = (s1, s2, . . . sm), where sj ∈ {1, . . . , n}.
Assumption: The length of input Len(m) is known, and the range is known.

Let fi = |{1 ≤ j ≤ m} | sj = i|.
F0 = ∑n

i=1( fi)
0 = # of distinct elements, where 00 = 0.

F1 = ∑i fi = m, space complexity: log m.

What about F2 = ∑i f 2
i ? Can we find an algorithm with logarithmic space complexity?

3.1 Deterministic algorithm fails for F2

Assume there exists a deterministic algorithm to compute F2 exactly. We construct a stream:(
(1, x1), . . . , (n, xn)

)
, where x ∈ {0, 1}n (10)

Run the algorithm. Assume the memory at the end is m(x) ∈ {0, 1}S.

We then initialize the memory to m(x) and feed and (i, 0) to the algorithm. There are two
possibilities:

• F2 increases by 1, if xi = 1,

• F2 increases by 22 − 1 = 3, if xi = 0.

It’s possible to completely recover x by m(x), so m(x) must have at least 2n possible values.
The space complexity is Ω(n).

3.2 Randomized algorithm for F2

Hash function h : {1, . . . , n} → {1,−1}.

• Initialize: set c = 0

• Process sj: Add h(sj) to c.

8
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• Return c2.

Space: −m ≤ c ≤ m, so it takes O(log m) space.

We show that Z = c2 is an unbiased estimation of F2. For j ∈ {1, . . . , n}, let Yj = h(j) ∈
{±1}.

Z = ( f1Y1 + · · ·+ fnYn)
2 (11)

so

E[Z] =
n

∑
i=1

fiE[Yi]
2 + ∑

i ̸=j
fi f jE(Yi)E(Yj) =

n

∑
i=1

f 2
i = F2. (12)

We now bound the variance of Z to apply tail bounds.

E[Z2] = ∑
i,j,k,l

fi f j fk flE[Yi]E[Yj]E[Yk]E[Yl ] (13)

=
n

∑
i=1

f 4
i E[Y4

i ] + 3 ∑
i ̸=j

f 2
i f 2

j E[Y2
i ]E[Y2

j ] (14)

= F4 + 3(F2
2 − F4), (15)

so Var(Z) = 2F2
2 − 2F4 ≤ 2F2

2 .

Pr[|Z− F2| ≥ ϵF2] ≤
2F2

2

ϵ2F2
2
=

2
ϵ2 . (16)

This bound is great, but not so satisfactory. Actually, using the median of means trick, we
can get an exponential boost, i.e., a (1± ϵ) w.p. at least (1− δ) using space O( 1

ϵ2 log(1/δ) log m).

3.3 Derandomization

Definition 3.1. A family of random varibles (x1, . . . , xN) is called k-wise independent if for every
k-tuple (i1, . . . , ik) ∈ {1, . . . , N}k, (xi1 , . . . , xik) are independent.

Specifically, when they are N-wise independent, it is called fully independent.

Remark. The randomized algorithm above does not need full independence. In fact, all
we need is a 4-wise independence (required in the analysis of variance). This is also the
reason why we can construct such a hash function in O(log n) but not O(n).

Definition 3.2. A family H of hash functions h : A→ B is called k-wise independent if for any
distinct points x1, . . . , xk ∈ A and i1, . . . , ik ∈ B,

Pr
h∈H

(
h(x1) = i1, . . . , h(xk) = ik

)
=

1
|B|k . (17)
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3.4 Construction of k-wise independent hash functions

Let A = B = Zp := {0, 1 . . . , p− 1}, where p is a prime.

H2 = { fa,b : x 7→ ax + b mod p, (a, b) ∈ Z2
p}. (18)

Then

Pr
a,b
(ax1 + b = i1 ∧ ax2 + b = i2) = Pr

a,b
(a =

i2 − i1
x2 − x1

∧ b = i2 − x2a) =
1
p2 . (19)

So this is a 2-wise independent hash function family. We get h(0), . . . , h(p) p random
variables with 2 log p space.

We can extend to x 7→ ∑k−1
i=0 aixi mod p to create a k-wise independent hash function family,

with space complexity of k log p.

3.5 Algorithm for F0.

Function h : {1, . . . , n} → {1, . . . , n}.

• Initialize c = 0

• Process sj: Let z be the largest power of 2 that divides h(sj). If z > c, c← z.

• Return 2c+1/2.

Intuition:

If the stream has d distinct elements, there is a good chance that one of the d values of h(sj)
will be divisible by d.

If there are no more than d distinct elements, it’s unlikely that an h(sj) has more than log d
zeros in a row.

j = {1, . . . , n}, r ≥ 0, Xr,j : indicator random variable that h(j) is divisible by 2r.

Yr = ∑j: f j>0 Xr,j. So if Yr = 0, no elements have r or more zeros, so c ≤ r− 1.

E[Xr,j] = Pr
(
h(sj) has r zeros

)
=

1
2r . (20)

so
E[Yr] =

F0

2r , Var(Yr) = ∑
j: f j>0

Var(Xr,j) =
F0

2r . (21)

Pr[Yr > 0] ≤ F0

2r , Pr[Yr = 0] ≤ 2r

F0
. (22)
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4 Johnson-Lindenstrauss Lemma

JL Lemma states that we can map data that lie in a high-dimensional space to a low-
dimensional one, preserving some of the structures in data.

Lemma 1 (JL Lemma). Let S be a set of n points in Rd. For some dimension k = O( ln n
ϵ2 ), there

exists a matrix A ∈ Rk×d such that ∀u, v,∈ S,

(1− ϵ)∥u− v∥2 ≤ ∥Au− Av∥2 ≤ (1 + ϵ)∥u− v∥2. (23)

4.1 Norm Preservation

Lemma 2. For any integer d > 0, 0, ϵ, δ < 1, and integer k >
4 log( 2

δ )
ϵ2−ϵ3 , there exists a distribution

on k× d real matrices, such that for any x ∈ Rd,

Pr
(
(1− ϵ)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + ϵ)∥x∥2

)
> 1− δ. (24)

Proof of JL Lemma by lemma 2. Let δ = 1
n3 . We apply union bound over u, v, and the proof

is done.

In fact Aij ∼ N (0, σ2) is the construction we need for this lemma.

Proof of lemma 2. Random choose the entry of A ∈ Rk×d. Aij ∼ N (0, 1
k ).

(Ax)1 =
d

∑
i=1

A1,ixi (25)

This is a random variable N (0, ∥x∥
2

k ).

E[∥Ax∥2] = k ·E∥(Ax1)
2∥ = k

∥x∥2

k
= ∥x∥2. (26)

Now let Zi ∼ N (0, ∑d
i=1 x2

i
k )

Pr
(
∥Ax∥2 ≥ (1 + ϵ)∥x∥2) = Pr

(
k

∑
i=1

Z2
i ≥ (1 + ϵ)∥x∥2

)
(27)

= Pr

(
k

∑
i=1

Y2
i ≥ (1 + ϵ)k

)
, where Zi ∼ N (0, 1) (28)

11
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= Pr

(
exp

(
k

∑
i=1

Y2
i

)
≥ e(1+ϵ)k

)
(29)

≤ ∏k
i=1 E(etY2

i )

etk(1+ϵ)
(30)

=
1

(1− 2t)k/2etk(1+ϵ)
(31)

The last equality holds because E(etX2
) = 1√

1−2t
for X ∼ N (0, 1), t < 1

2 . Then applying the

fact that 1− x ≤ e−x ≤ 1− x + x2

2 and let t = ϵ
2(1+ϵ)

, k > 4 log(2/δ)
ϵ2−ϵ3 ,

Pr
(
∥Ax∥2 ≥ (1 + ϵ)∥x∥2) ≤ δ

2
. (32)

4.2 Packing

In Rk we can only have k perfectly orthogonal vectors. Let e1, . . . , en ∈ Rn be unit or-
thogonal vectors. After applying JL lemma, we have e′1, . . . , e′n ∈ Rk. Then ⟨ei, ej⟩ ≤ ϵ for
i ̸= j.

This means that for k ≥ 1, 0 < ϵ < 1, ∃n = eΩ(ϵ2k) near-orthogonal vectors in Rk.

Lower bound. Let e′i, e′j be two ϵ-near orthogonal vectors in Rk, then two unit balls with
centers e′i, e′j with radius 1

2

√
2− 2ϵ are disjoint. However, the total volume of the ball with

radius 1 +
√

2−2ϵ
2 is O(eO(ϵd)).

With a more fine-grained analysis, we can get a tighter lower bound O(eΩ(ϵ2d))

4.3 Application: Approximate Nearest Neighbor

x1, . . . , xn ∈ Rd. Given a query y ∈ Rd, find the closest xi to y.

If d is small, we have efficient data structures with quasi-linear in space and in log n time.

If d is large, we need space O(nd) and query O(nd); or nO(d) in space and query time
O(d log n).

Definition 4.1 (ϵ-Approximate NN). Given y, an ϵ-approximate nearest neighbor is an output i
such that ∥y− xi∥ ≤ (1 + ϵ)minj ∥y− xj∥.

Assume the closest point to y has distance 1.

12
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• Preprocess:

Fix a grid on Rd with side length ϵ/
√

d. Let Gi be the set of grid cells that contain at
least one point at a distance at most 1 from xi.

Store (c, i) for each c ∈ Gi.

• The space consumption for each i:

2d/dd/2

( ϵ√
d
)d ∼ ϵ−d. (33)

• The query time is O(d).

How to do better using JL lemma?

In the preprocessing phase, project xi to a space with dimension d′ = O( log n
e2 ).

The space cost is then
nO(log(1/ϵ)/ϵ2) (34)

Time cost of projection during a query is dϵ−2 log n time, so the time is

dϵ2 log n (35)

13
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5 Linear Programming

Standard form

max
x

cTx

s.t. Ax ≤ b, x ≥ 0. (36)

Dual problem

min
y

bTy (37)

s.t. ATy ≥ c, y ≥ 0. (38)

5.1 Uncapacitated Facility Location

Let D be the set of clients and F be a set of facilities. There is a close fi to open facility i.

Goal: choose a subset of F′ ⊆ F that minimizes ∑i∈F′ fi + ∑j∈D mini∈F′ cij.

cij should satisfy the triangle quality.

We find an equivalent integer programming:

min
x,y ∑

i∈F
fiyi + ∑

i∈F,j∈D
cijxij

s.t. ∑
i∈F

xij = 1, ∀j ∈ D,

xij ≤ yi, ∀i, j,

xij, yi ∈ {0, 1}. (39)

This problem is in general NP-hard. Hence we relax the integer constraint to xij, yi ∈ [0, 1].

How to round a solution of the linear program to an integer solution?

Fix an order j1, . . . , jk for clients. Let N(j) = {i : xij > 0}. We say j and j′ are close if
N(j′) ∩ N(j) ̸= ∅.

Dual problem:

max
v ∑

j∈D
vj (40)

s.t. vj ≤ cij + wij, ∀i ∈ F, j ∈ D. (41)

∑
j∈D

wij ≤ fi, ∀i ∈ F (42)

14
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wij ≥ 0. (43)

Greedy deterministic LP rounding

• Solve Primal and dual LPs to obtain x∗ij and v∗j

• Order the set D of users, according to increasing v∗j .

For a user in D,

• Let j be the user of smallest v∗j , Let i ∈ N(j) minimize fi. Open facility i, assign it to
user j. Remove j from D.

• ∀j′D, N′j ∩ Nj ̸= ∅, assign j′ to i. Remove j′ from D.

Analysis.

Note that ∑i∈N(jk) xij∗k = 1, we have

∑
k

fik = ∑
k

fik ∑
i∈N(jk)

x∗ijk (44)

≤∑
k

∑
i∈N(jk)

fix∗ijk ( fik ≤ fi, ∀I ∈ N(jk))

≤∑
k

∑
i∈N(jk)

fiy∗i (LP constraint)

≤∑
i

fiy∗i . (45)

Suppose a user ℓ is assigned to facility ik. Let h ∈ N(l) ∩ N(jk).

cik l ≤ cijk + chjk + chl (46)

≤ v∗jk + v∗jk + v∗l . (47)

≤ 3v∗l . (48)

This is because complementary slackness implies

if x∗ij > 0→ v∗j = cij + wij ≥ cij. (49)

Therefore,
∑

j
cg(i)j ≤ 3 ∑

j
v∗j ≤ 3Z∗LP (50)

cost = f acility + clientconnection ≤∑
i

fiy∗i + 3Z∗LP ≤ 4Z∗IP. (51)

15
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6 Semi-definite programming

We consider the Max-Cut problem on a graph G = (V, E). We want to choose a subset
U ⊆ V, to maximize |E(U, V\U)|, i.e., to maximize the number of edges connecting a node
in U to a node outside U.

Integer program for Max-Cut

max
(u,v)∈E

zuv

s.t. zuv ≤ xu + xv

zuv ≤ (1− xu) + (1− xv)

zuv, xu ∈ {0, 1} (52)

Randomly cutting the graph gives us a 1/2 approximation.

max
(u,v)∈E

1− xuxv

2
(53)

s.t. xi ∈ −1, 1, ∀i ∈ V, . (54)

6.1 SDP definition

Definition 6.1 (Positive semi-definite matrix). Let X ∈ Rn×n be symmetric. X is positive
semi-definite or X ⪰ 0, if the following equivalent statements are true:

• ∀a ∈ Rn, aTxa ≥ 0,

• X = BTB for some B.

• All eigenvalues of X are nonnegative.

Definition 6.2 (SDP standard form).

min
X∈Rn×n

tr(CTX)

s.t. tr(AT
i X) = bi, X ⪰ 0. (55)

Dual problem

max
y

bTy (56)

16
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m

∑
i=1

yi Ai + S = C (57)

S ⪰ 0 (58)

To derive this, remember that we want

⟨C, X⟩ ≥∑
i

yi⟨Ai, X⟩ = bTy. (59)

so ⟨C−∑i yi Ai, X⟩ ≥ 0 for all X ⪰ 0, which means C−∑i yi Ai ⪰ 0.

6.2 Strong duality

Theorem 6.3 (Slater’s condition). Strong duality holds for SDP problems if the feasible region
has an interior point.

6.3 Max Cut

Now we relax the max cut problem to a SDP problem.

max
u,v∈E

1− ⟨xu, xv⟩ (60)

s.t. xi ∈ Sn−1. (61)

Then let A be the adjacency matrix and X = ∑ij xixT
j be the gram matrix. Then this is a

SDP.

Theorem 6.4 (This is an SDP!). Let A be the adjacency matrix, Aij = 1 if (i, j) ∈ E and Aij = 0
otherwise. We define X to be the gram matrix Xij = xT

i xj. Then MaxCut′ is equivalent to the
following SDP

min ⟨X, A⟩ = tr(ATX)

s.t.X ⪰ 0, X ∈ Sn

Xii = 1, ∀i. (62)

Theorem 6.5 (Goemans-Williamson). αgw = min0≤θ≤π
2
π

θ
1−cos θ ∼ 0.87856.

Solve the SDP to obtain X. Then Xuv = ⟨xu, xv⟩. Find xu by decomposing X = UTU. Choose a
vector a uniformly on the sphere Sn−1.

Set xu = sign(⟨a, xu⟩).
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6.4 Quadratic programs

OPT = max
xi ,yi∈{±1}

∑
ij

Aijxiyj. (63)

This problem is hard. Specifically, it is harder than Max-cut, i.e., maxxi∈{±}
1
2 (1− xixj). To

see this, let Aii be extremely large, so xi = yi must hold. Then Max-cut is reduced to this
problem.

Relaxtion

OPT′ = max∥ui∥=1,∥vi∥=1Aij⟨ui, vj⟩ = Aijzij. (64)

Let B =

(
C Z

ZT D

)
⪰ 0 where C, D has diagonal entries to be 0. Since B = WWT, for

W =

(
u
v

)
, B ⪰ 0.

This is an SDP program.

Theorem 6.6 (Grothendieck’s inequality).

OPT ≤ OPT′ ≤ π

2 ln
(

1 +
√

2
)OPT. (65)

We first try the hyperplane rounding we used in Goemans-Williamson,

SDP contributes: Aij⟨ui, vj⟩ = Aij cos θij.

Rounding contributes: Aij ·
(
− 1 · (θij/π)1 · (1− θij/π)

)
=

2Aijθij
π

However, Aij could be negative, making this bound infeasible.

Fortunately, we have the following lemma, which directly proves the theorem. To see this,
we first apply this transformation in the lemma and then do the hyperplane rounding.

Lemma 3. For any unit vectors u1, . . . , um, v1, . . . , vn, then there exists a new set of unit vectors
u′1, . . . , u′m, v′1, . . . , v′n, s.t.

Ea[sign(aTu′i)sign(aTv′j)] =
2
π

ln
(

1 +
√

2
)
⟨ui, vj⟩. (66)

Proof. Define tensor product U⊗2 = [u2
1, u1u2, . . . , u2

n]. Let c = sinh−1 1 = ln
(

1 +
√

2
)

.
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By Taylor’s expansion,

sin c⟨u, v⟩ =
∞

∑
k=0

(−1)k c2k+1]

(2k + 1)!
⟨u, v⟩2k+1 (67)

Let

u′ = [
√

u, (−1)

√
c3

3!
u⊗3, . . . , (−1)k

√
c2k+1

(2k + 1)!
u⊗2k+1] (68)

and

v′ = [
√

v,

√
c3

3!
v⊗3, . . . ,

√
c2k+1

(2k + 1)!
v⊗2k+1] (69)

Then ⟨u′, v′ = sin(c⟨u, v⟩).
And ⟨u′, u′ = sinh(c) = 1. This is because removing the sign in the Taylor’s expansion
yields sinh(c⟨u, v⟩).
Then

Ea[sign(aTu)sign(aTv)] =
2
π

arcsin⟨u′, v′⟩ = 2
π

c⟨u, v⟩ (70)

Lavasz theta function

Let α(G) be the size of the largest independent set of G.

Let χ(G) be the chromatic number of G. And let Ḡ be the complement of G.

Then
χ(Ḡ) ≥ α(G). (71)

We define

θ(G) := min k, (72)

s.t. ⟨vi, vj⟩ = −
1

k− 1
∀(i, j) ̸∈ E, (73)

⟨vi, vi⟩ = 1. (74)

Theorem 6.7. α(G) ≤ θ(G) ≤ χ(Ḡ).

Proof. First θ(G) ≤ χ(Ḡ).

Fact: ∃k unit vectors u1, ,̇uk such that ⟨ui, uj⟩ = − 1
k−1 .

Then any k-coloring of Ḡ yields u1, . . . , uk.
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The other direction: θ(G) ≥ α(G). We solve the SDP to obtain vi. For an independent set,
consider v1, . . . , vs of the independent set

0 ≤ (
s

∑
i=1

vT
i )(

s

∑
i=1

vi) ≤
s

∑
i=1

vT
i vi + ∑

i ̸=j
vT

i vj (75)

Then at least one term of vT
i vj ≥ − s

2 (
s
2) = −

1
s−1 . However, ⟨vi, vj⟩ = − 1

θ(G)−1 .

20



Analysis and Design of Algorithms

7 Online Algorithms

7.1 Multiplicative Weights

We wish to make predictions over T days, relying on n expects that we have. Define f t
i to

be the loss of expert i, on day t. Without loss of generality, ∥ f t∥)∞ ≤ 1.

Our goal is to minimize the regret

Regret =
T

∑
t=1
⟨pt, f t⟩ −min

u

T

∑
t=1

f t
i . (76)

Naive idea: to pick the best expert so far. Then there exists a set of f (t) so that the regret
∼ T(1− 1

n ).

Weighted Majority. Assuming we are making binary choices. Assign each expect i with
weight w(1)

i = 1. We can make a majority vote and predict

x =
∑n

i=1 wixi

∑n
i=1 wi

. (77)

Assumption: There is an expert who is always correct.

Algorithm: Remove the experts with the wrong predictions. Then each time we make a
mistake, we halve the number of experts. Regret = O(log n). This is basically the idea of
the multiplicative weights algorithm.

If we remove the assumption that there is an expert always correct, we can restart after
removing all experts. The bound is O((M + 1) log n) if the best expert makes M mistakes.

The idea of multiplicative weight on binary outcomes

• Set w(1)
i = 1.

• After observing the outcome at day t, set w(t+1)
i =

w(t)
i
2 if i makes a wrong prediction.

Analysis: let Φ(t) = ∑n
i=1 w(t)

i . Then

Φ(T+1) ≥ (
1
2
)#i′s mistakes (78)

Φ(t+1) ≤ 3
4

Φ(t), (when the algorithm makes a mistake) (79)
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Therefore,

# mistakes ≤ 1
log 4/3

(#i′s mistakes + log n) (80)

However, this does not guarantee a bound on the regret, due to the log 4/3 constant. We
now state the full version of multiplicative weights.

Multiplicative weights algorithm

• Set w(1)
i = 1.

• For t = 1, . . . , T,

– Follow expert i with probability pt
i =

wt
i

∑i wt
i
.

– w(t+1)
i ← w(t)

i (1− ϵ f t
i ), ∀i.

Theorem 7.1. If 0 < ϵ ≤ 1
2 , then the multiplicative weight gives the following bound on regret

regret ≤ log n
ϵ

+ ϵT. (81)

If T is known, ϵ =
√

log n
T , regret ≤ 2

√
T log n.

Proof. Define a potential function Φt = ∑i w(t)
i . Then

Φ(t+1) = ∑
i

w(t)
i (1− ϵ f t

i ) = ∑
i

pt
i Φ

t(1− ϵ f t
i ). (82)

Therefore,
EΦ(t+1) = EΦ(t)(1− ϵEℓt) ≤ Φt exp(−ϵEℓt). (83)

Hence EΦ(T) ≤ n exp(−ϵEL1:t).

On the other hand, let i be any expert,

EΦ(T) ≥ wT
i ≥

T

∏
t=1

exp
(
−ϵ f t

i − ϵ2( f t
i )

2). (84)

Then let i be the optimal expert,

E[L1:t]−OPT ≤ 1
ϵ
(log n + ϵ2

T

∑
t=1

( f t
i )

2) ≤ log n
ϵ

+ ϵT. (85)

Remark. When ∥ f t∥∞ ≤ ρ, regret ≤ ρ2 log n
ϵ + ϵT.
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7.2 Application of Multiplicative Weight

Zero-sum Games.

v = min
x

max
y

c(x, y) (86)

Theorem 7.2 (Von Neumann). Let x, y be mixed strategies of players A and B, then

min
x

max
y

c(x, y) = max
y

min
x

c(x, y). (87)

Another way of phrasing: ∃(x, y), x, y ≥ 0, ∑i xi = ∑i yi = 1, then there is a value v,

xT M ≥ v, My ≤ v, where Mij = c(i, j). (88)

We try to prove this theorem by multiplicative weights. Let (p1, q1), . . . , (pT, qT) be the
strategies over T days.

Then

−(
T

∑
t=1
⟨pt, Aqt⟩ −max

i

T

∑
t=1

(Aqt)i) ≤
ln m

ϵ
+ ϵT (89)

and
T

∑
t=1
⟨qt, Apt⟩ −max

i

T

∑
t=1

(Apt)i ≤
ln m

ϵ
+ ϵT (90)

Adding them together,

max
i

T

∑
t=1

(Aqt)i −min
j

T

∑
t=1

(ptT A)j ≤
2 ln m

ϵ
+ 2ϵT = 2

√
logn

T
. (91)

Let P̄ = 1
T ∑T

i=1 pt, q̄ = 1
T ∑T

i=1 qt, then

max
i

(Aq̄)i −min
j
(q̄T A) ≤ δ = 2

√
log n

T
. (92)

This means
min

j
( p̄T A)j ≤ P̄T Aq̄ ≤ max

i
(Aq̄)i ≤ min

j
( p̄t A)j + δ (93)

When T goes to infinity, the two bounds are equal, which proves our theorem.
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7.3 Application: Max Flow

Consider an unweighted graph G = (V, E). The max flow problem can described by a
linear program:

Let Ps,t be the set of all paths from s to t, then

max
p∈Ps,t

x(p). (94)

s.t. ∑
p:e∈p

x(p) ≤ 1, ∀e (95)

x(p) ≥ 0. (96)

The dual problem:

min
e ∑

e
ℓ(e) (97)

s.t ∑
e∈p

ℓ(e) ≥ 1, ∀p ∈ Ps,t (98)

ℓ(e) ≥ 0. (99)

Zero sum game conversion:

Let γ be the optimal flow, a player P chooses a path, and a player D chooses an edge (might
be a mixed strategy). Payoff for D is 1 if e ∈ P and 0 otherwise.

Lemma 4. Let v be the value of the game. Then v = 1
γ .

Proof. Given an optimal solution ℓ(e) to the dual, D plays edge e with probability ℓ(e)
∑e ℓ(e)

=
ℓ(e)

γ , then for all paths, the payoff for D is

∑
e∈P

ℓ(e)
γ

=
1
γ ∑

e∈P
ℓ(e) ≥ 1

γ
. (100)

Let x(p) be the optimal solution to the primal problem. P chooses a path p with probability
x(p)

γ . For any edge,

Pr[e ∈ p] = ∑
p:e∈p

=
1
γ ∑

p:e∈p
x(p) ≤ 1

γ
. (101)

Remark. We now want to run a multiplicative weights algorithm on this zero-sum game,
but the problem is that the primal problem has exponentially many variables. We have
make some modification to fix this issue.
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• For each t = 1, . . . , T, use multiplicative weights to choose a distribution wt on edges.
Let Pt be the best response to wt, which is to find the shortest path algorithm with
weights wt.

• Set the reward vector to be: rt(e) = 1[e ∈ Pt].

• Suppose the solution is p1, . . . , pt, we route γ
T units of flow on each pi. Denote this

route as f .

Lemma 5. This algorithm routes ≤ 1 + δ units on each edge, for T = 4γ2 ln m
δ2 .

Proof. Suppose for contradiction that ∃e ∈ f routes more than (1 + δ) on e, then there is
more than (1+δ)T

γ of the path p1, . . . , pT use edge e.

If the D player players edge e in hindsight, then the payoff is more than (1+δ)
γ .

In each step, player D gets at most 1
γ in expectation, because Pt is the best response.

Note that δ
γ ≤

Regret
T ≤ 2

√
T log n
T .

7.4 Application: Adaboost

Goal: to learn an unknown function X → {0, 1}, given a sequence of training samples
(x, c(x)), x ∼ D. We want to minimize

Ex∼D[|h(x)− c(x)|]. (102)

Weak learner: does slightly better than randomly guessing, with loss 1
2 − γ.

We consider samples in the training set as experts.

For hypothesis h, the penalty for expert x is 0 if h(x) ̸= c(x) and 1 otherwise. (Intuition:
we want to sample more on hard samples).

In each round, the algorithm gives a distribution Dt over experts and obtains a hypothesis
ht which is a weak learner for Dt, i.e., the penalty M(Dt, ht) ≥ 1

2 + γ.

The final hypothesis h f inal labels x according to a majority vote over h1(x), . . . , hT(x).

Analtsis:

Let S be the set of training samples labeled incorrectly by the final hypothesis.

Penalty for each x ∈ S, then since h f inal(x) is a majority vote,

∑
t

M(x, ht) ≤ T
2

. (103)
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Let the potential function be defined by Φt = ∑x wt.

Then
ΦT ≤ Φ1e−α ∑t M(Dt,ht) ≤ ne0αT( 1

2+γ) (104)

ΦT ≥ ∑
x∈S

wx ≥ ∑
x∈S

(1− α)∑
t

M(x, ht) ≥ |S|(1− α)T/2 (105)

Then we derive T = 2
γ2 log

( 1
ϵ′
)
, where ϵ′ = |S|

n
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8 Spectral Method

8.1 Sparsest cut

Definition 8.1 (Edge expansion). Let G = (V, E) be an undirected graph, and S ⊆ V be a
subset of vertices. The edge expansion of S is

ϕ(S) =
E(S, V − S)

d(S)
(106)

where d(S) = ∑v∈S d(v) be the total degree of the vertices in S.

The edge expansion of a cut (S, V − S) is max{ϕ(S), ϕ(V − S)}.
The edge expansion of a graph is

ϕ(G) = min
S:0<|S|<|V|

ϕ(S, V − S) = min
S:d(S)≤ d(V)

2 ,|S|̸=0
ϕ(S). (107)

Sparsest cut: Compute ϕ(G).

Example.

• Cycle: 2/n

• Clique: 1/2.

• Barbell: 1/n2

Let A be the adjacency matrix of G. Suppose G is a d-regular graph. The normalized
Laplacian is defined as

L = I − 1
d

A. (108)

We compute the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, then the Cheeger inequality states that

λ

2
≤ ϕ(G) ≤

√
2λ2. (109)

Lemma 6. Let M ∈ Rn×n be a symmetric matrix and λ1 ≤ · · · ≤ λn be eigenvalues of M. Then

λk = min
k−dim V

max
x∈V−{0}

xT Mx
xTx

. (110)
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Fact. If x1 is an eigenvector of λ1, then

λ2 = max
x ̸=0,x⊥x1

xT Mx
xTx

(111)

Note that the Laplacian of a d-regular matrix is L = dI − A.

xT Lx = ∑
(u,v)∈E

(xu − xv)
2. (112)

Let L̄ = L/d.

Theorem 8.2. Let G be a d-regular, undirected graph, let λ1 ≤ · · · ≤ λn be the eigenvalues of L̄.
Then

• λ1 = 0 and λn ≤ 2.

• λk = 0 if and only if G has at least k connected components.

• λn = 2 if and only if at least one of the connected components of G is bipartite.

Proof. i. Trivial.

ii. λk = mink−dim S maxx∈S−{0}
∑(u,v)∈E(xu−xv)2

d ∑v x2
v

. If λk = 0.

If λk = 0, there exists a k-dimensional S, ∀x ∈ S, xu = xv for all (u, v) ∈ E. This means x
must be constant within each connected component. Therefore, the dimension of S can
be at most the number of connected components. The reverse direction can be proved by
letting S be the space of vectors that are constant within each connected component.

iii. λn = maxx ̸=0
xT L̄X
xT x . Note that

2xTx− xT L̄x =
1
d ∑

(u,v)∈E
(xu + xv)

2. (113)

Therefore,

λn = 2−min
x ̸=0

∑(u,v)∈E(xu + xv)2

d ∑v x2
v

. (114)

If λn = 2, then there is a vector x ̸= 0, with ∑(u,v)∈E(xu + xv)2, so for all (u, v) ∈ E,
xu = −xv. Let A = {v : xv < 0}, B = {u : xu > 0}. Then A∪ B must be disconnected from
{v : xv = 0}. Moreover, A ∪ B is bipartite.
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8.1.1 Generalize to general graphs

L = D− A where D = diag(d1, . . . , dn). L̄ = I − D−1/2AD−1/2.

Then we generalize

∑(u,v)∈E(xu − xv)2

d
→ ∑

(u,v)∈E

( xu√
du
− xv√

dv

)2
. (115)

8.1.2 Proof of Cheeger’s theorem

We want to prove λ2
2 ≤ ϕ(G) ≤

√
2λ2.

The easy part: λ2
2 ≤ ϕ(G).

Note that λ2 (To fill.)

The hard part: ϕ(G) ≤
√

2λ2.

Lemma 7. Given any y ∈ Rv, there exists an algorithm to find S ⊆ supp(y) with

ϕ(S) ≤

√
2

yT Ly
yTDy

. (116)

Proof. We can solve the minD1/2y⊥v1

yT Ly
yT Dy problem efficiently when y ∈ [−1, 1]. The problem

is how should we round the solution.

Algorithm: sweep cut. Choose a threshold t ∈ [0, 1] at random, and output S+ = {i ∈
V | y2

i > t}. This procedure can be simply derandomized by enumerating all n− 1 possible
cuts.

Et|E(St, S̄t)| = ∑
(i,j)∈E

Pr[(i, j) cut by St] (117)

= ∑
(i,j)∈E

|yi − yj|(yi + yj) (118)

≤
√

∑
(i,j)∈E

(yi − yj)2 ·
√

∑
(i,j)∈E

(yi + yj)2 (119)

≤
√

∑
(i,j)∈E

(yi − yj)2 ·
√

2 ∑
i∈V

d(i)y2
i (120)
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The first term is just the numerator. Note that Et[d(St)] = ∑i∈V d(i)Et[1(i ∈ St)] =

∑i∈V d(i)y2
i .

Therefore,
Et[|E(St, S̄t)|]

Et[d(St)]
≤

√
2

yT Ly
yTDy

. (121)

This means

Et[|E(St, S̄t)| −

√
2

yT Ly
yTDy

|d(St)|] ≤ 0. (122)

It means there exists a t∗ such that

|E(St∗ , S̄t∗)|
[d(St∗)]

≤

√
2

yT Ly
yTDy

. (123)

Now we only need to show a construction of z from y, which satisfies R(z) ≤ R(y), and at
the same time

∑
i:zi≥0

d(i) ≤ d(V)

2
. (124)

Since D1/2y ⊥ v1 we know ∑i d(u)yi = 0. Suppose y1 ≤ y2 ≤ . . . yn WLOG. Find the
smallest j such that

∑
1≤i≤j

d(i) ≥ d(V)

2
. (125)

and let z = y− yj. Let z+ = max(0, z) and z− = min(0, z). Then we know

∑
i:z−i ̸=0

d(i) ≤ d(V)

2
and ∑

i:z+i ̸=0

d(i) ≤ d(V)

2
(126)

Lemma 8. min{R(z−), R(z+)} ≤ R(z) ≤ R(y).

Proof. First, R(z) ≤ R(y) because their numerators ∑(zi − zj)
2 = ∑(yi − yj)

2 and their
denominators ∑i d(i)z2

i = ∑i d(i)y2
i + ∑i d(i)y2

j − 2yi ∑i yid(i) = ∑i d(i)y2
i + ∑i d(i)y2

j ≥
∑i d(i)y2

i . Note that ∑i yid(i) = 0 is derived from D1/2y ⊥ v1.

Moreover,
zTDz = z+TDz+ + z−TDz− (127)

and
zT Lz ≥ z+T Lz+ + z−T Lz− (128)
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Then
z+T Lz+ + z−T Lz−

z+TDz+ + z−TDz−
≤ R(z). (129)

which means one of R(z−) and R(z+) must be less than R(z).

Finally, we conclude that ϕ(G) ≤
√

2λ2 since

ϕ(G) = min
S:d(S)≤ d(V)

2 ,|S|̸=0
ϕ(S). (130)

8.2 Spectal Clustering

Problem: input a set of points ai with a measure of similarity wij ≥ 0. How do we cluster
them?

• Embed into Rd by using eigenvectors of L̄. Suppose (v1, . . . , vd+1) are the d smallest
eigenvalues. We map ai to ((v2)i, . . . , (vd+1)i).

• When d = 2, it is equivalent to our sweep cut algorithm.
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9 Random Walk

2-SAT problem.

Start with a random assignment. At each step, choose a clause that is not satisfied, and flip
a variable in the clause.

Analysis.

Consider the Hamming distance r ∈ [0, n] between the current assignment to the best. (n is
the number of variables). The hitting time to r = 0 should be O(n2).

9.1 Random walk on graphs

Let G = (V, E) be an undirected graph.

At each time, a random walk is at some node i ∈ V. At time t+ 1, the random walk chooses
a neighbor of i at random and moves to that neighbor.

A “lazy” random walk: stays at i with probability 1/2.

Stationary distribution.

• Does there exist one?

• If exists, how long does it take to converge? (mixing time)

Let p(t) be the probability distribution at time t.

pt+1(i) = ∑
j:(i,j)∈E

pt(j)
1

d(j)
. (131)

We can write this as a matrix multiplication:

pt+1 = AD−1 pt, (132)

where D = diag(d1, . . . , dn), and A is the adjacency matrix. AD−1 is called the transition
matrix.

Definition 9.1 (Stationary distribution). A probability distribution π over V is a stationary
distribution if

π = (AD−1)π. (133)

We can directly write out a stationary distribution

π =
(d1, . . . , dn)

2m
, where m = |E|. (134)
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Definition 9.2 (ergodic). A random walk is called ergodic if there is a distribution π, such that
for any initial distribution p0,

lim
t→∞

pt = π. (135)

Theorem 9.3. A random walk is ergodic if and only if it is connected and not bipartite.

Lazy random walk:

pt+1(i) =
1
2

pt(i) +
1
2 ∑

(i,j)∈E

pt(j)
d(j)

. (136)

and in matrix forms:
pt+1 = (

1
2

I +
1
2

AD−1)pt. (137)

Theorem 9.4. A lazy random walk is ergodic if and only if G is connected.

Proof of theorem 9.3 and 9.4 for d-regular graphs. Let α1 ≥ · · · ≥ αn be the eigenvalues of
Ā = AD−1, and x1, . . . , xn be the corresponding eigenvectors.

From theorem 8.2,

• α1 = 1, x1 = 1/
√

n

• α2 < 1 if G is connected.

• αn ≥ −1. If G is not bipartite if and only if αn > −1.

Let p0 = ∑n
i=1 cixi, where ci = ⟨xi, p0⟩. Then

pt =
t

∑
i=1

ciα
t
i xi. (138)

If G is connected and not bipartite, then |αi| < 1, for all i ̸= 1. Thus, αt
i → 0 as t→ ∞.

lim
t→∞

n

∑
i=1

ciα
t
i xi = c1x1 =

1
n

. (139)

For lazy random graph, wi = 1
2 (1 + αi) ∈ [0, 1) when G is connected. So wt

i → 0 as
t→ ∞.
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9.2 Mixing time

Definition 9.5 (Mixing time). The smallest time t such that DTV(pt, π) ≤ 1/4, where π is the
stationary distribution.

Definition 9.6 (Spectral gap). We define the spectral gap of a graph by

α = min{1− α2, 1− |αn|}. (140)

For regular random walks,

pt =
n

∑
i=1

ciα
t
i xi =

1
n
+

n

∑
i=2

ciα
t
i xi. (141)

Then

DTV(pt, π) = ∥
n

∑
i=2

ciα
t
i xi∥1 (142)

≤
√

n∥
n

∑
i=2

ciα
t
i xi∥2 (143)

≤
√

n(1− αt)(
n

∑
i=2

c2
i )

1/2 ≤
√

n(1− αt). (144)
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10 Expander Graph

Definition 10.1. A two-sided spectral expander (d, γ) is a graph, such that

• G is d-regular

• ∀i ≥ 2|λi(L̄)− 1| ≤ γ

• Explicit: If it takes poly(n) time to produce A.

• Strongly explicit: If it takes time log n to produce the neighbor of a given vertex.

Remark. For complete graphs, λ2(L̄) = 1/2. For a path, λ2(L̄) = 1/n2.

Proposition 10.2 (Expanders are reliable networks.). For expander graphs, if k edges are
removed, the largest connected component is ∼ n− k

dϕ .

10.1 Random walks on expander graphs

On a complete graph, it takes O(k log n) bits to represent a k-steps random walk. On an
expander, it takes log n + kd = log n + O(k).

10.2 Application: Pseudo-random number generation

Syooise we are given an algorithm with a constant error rate. We can decrease its error rate
to exponentially small by repeating polynomial times.

Using Chernoff bound and repeat t times, the error rate is C−t. Suppose the algorithm
requires r random bits. The repeat-Chernoff requires rt random bits. However, with
expanders, we reduce the number of random bits to r + 10t.

Algorithm.

• Choose v ∈ {0, 1}r at random.

• Take t− 1 steps running a random walk on (V = {0, 1}r, E) to generate v2, . . . , vt.

Note that a strongly explicit graph is required, as the number of vertices is exponentially
large.

Expander graph on V, d = 400, ∀i ≥ 2, |µi ||
d ≤

1
10 . (µi is the adjacency).

Let |X| ⊆ {0, 1}r be the set that the algorithm is incorrect on. |X| ≤ 2r

100 . Let S = {i : vi ∈
X}. Let Y = V − X.
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p0 = 1
n . The characteristic vectors of X and Y is defined χx and χy.

Let Dx = diag(χx) and Dy = diag(χy). W = A
d is the transition matrix. The probability

that a vertex chosen according to p in X is

χT
x p = 1TDx p. (145)

q = WDx p0 is the probability that a walk starts at a vertex in X and goes to q. The
probability that the walk is in X at time i ∈ R is (R is an arbitrary subset of time in 1, . . . , t)
We want to show

1TDZtWDZt−1W . . . DZ1WDZ0 p0 ≤
1
5

|
R|. (146)

where Zi = X is i ∈ R and Y otherwise.

Lemma: ∥DXW∥ ≤ 1/5.

Then

1TDZtWDZt−1W . . . DZ2WDZ0 p0 = 1T(DZtW)(DZt−1W) . . . (DZ1W)(DZ0W)p0 ≤ (1/5)R∥p0∥
(147)

Then,

Pr
[
|S| > t

2

]
≤ ∑
|R|> t

2

Pr[walks is in X at times R] ≤ (2/
√

5)t+1 (148)

For lemma: Let v = c11 + y, with 1Ty = 0. Then ∥v∥ ≥ max{c1
√

n, ∥y∥}.

∥DxWv∥
∥v∥ (149)

36



Analysis and Design of Algorithms

11 Hardness Assumption

11.1 Encryption

Alice sends a message b to Bob. Bob should be the only person who can decode the
message.

Private-key encryption

• Shared key: random bit c ∈ {0, 1}.

• To send a message b, Alice sends b⊕ c. (One time pad).

Public-Key encryption

• Key generation: Generate a public key and a secret key. Publish pk.

• Encryption: take randomness r, Enc(b, pk, r) = c

• Decryption: Dec(pk, sk, c) = b.

Definition 11.1 (Computationally indistinguishable). We say (pk, Enc(pk, r, 0)) ∼ (pk, Enc(pk, r, 1))
computationally indistinguishable, if:

If there exists an efficient algorithm that distinguishes Enc(0), Enc(1), then some underlying
hardness assumption is broken.

11.2 Hardness

Definition 11.2 (Learning with errors). The LWE problems are defined by

• A ∈ Zm×n
q with m≫ n log q.

• A is sampled uniformly at random,

• Consider s ∈ Zn
q . Given As, solving s is easy.

• Given As + e, e ∈ Zm
q and e = O(

√
n).

Assumption 11.3 (Decisional LWE assumption). Let e sampled from a truncated Gaussian,
|e| ≤ σ and σ ≥ 2

√
n.

(A, As + e) ∼ (A, Uni f (Zm
q )) (150)
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11.3 Encryption scheme from LWE.

Private-key scheme:

• Shared key s ∈ Zn
q .

• To encrypt a message b, pick A at random and pick e.

c = As + e + (0, . . . , 0, b · ⌊q/2⌋.) (151)

• Send (A, c).

• To decrypt, output rounding(c− As).

Public-key scheme:

The only difference is that we treat A, As + e as the public-key, and treat s as the secret key.

• Randomness r ∈ {0, 1}m. Encrypt: (rT A, rT(As + e) + b⌊q/2⌋)

• Decrypt (c1, c2): round c2 − cT
1 s.

Security of the Public-key scheme.

We can show rT[A u] + (0, . . . , 0, b⌊q/2⌋) is indistinguishable to uniform by the following
lemma.

Lemma 9 (Leftover Hash). For m≫ n log n, and r uniformly at random, then the following two
distributions are statistically close:

(A, rT A), (A, u). (152)

11.4 Worst-case to average-case reduction

Start with a distribution D over s, such that (A, As + e) is hard.

Sample ŝ uniformly at random, (A, As + e + Aŝ).
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12 Quantum Computing

Consider qubit |0⟩ =
(

1
0

)
, and |1⟩ =

(
0
1

)
.

Definition 12.1 (Quantum circuits.). A quantum circuit is defined by a unitary matrix U
(UTU = I), so that

⟨ψ|UTU|ψ⟩ = ⟨ψ|ψ⟩ = 1. (153)

Definition 12.2 (Universal quantum gates). • Toffoli: T |a, b, c⟩ = |a, b, ab⊕ c⟩.

• Hadamard: H |0⟩ = 1√
2
(|0⟩+ |1⟩), and H |1⟩ = 1√

2
(|0⟩ − |1⟩.

One can check that both gates are unitary.

12.1 Efficient period finding

Simon’s problem. Input a black-box function f : {0, 1}n → {0, 1}n. Promise that there
exists s ∈ {0, 1}n, f (x) = f (x + s). How to find s?

Classical algorithms take exponential time.

Quantum speedup.

• Create a uniform superposition: 1√
2n ∑x |x⟩ by H |0⟩.

• Apply f in superposition:

1√
2n ∑

x
|x⟩ |0n⟩ → 1√

2n ∑
x
|x⟩ | f (x)⟩ . (154)

Note that this operation is unitary (reversible) as we can subtract f (x) to recover.

• Measure the second register. If we measure y ∈ {0, 1}n, the probability of y is 2 · 1√
2n ,

and the remaining state

1√
2
(|x⟩+ |x⊕ s⟩), s.t. f (x) = f (x +⊕s) = y. (155)

• Apply H⊕n.
1√

2 · 2n
(∑

y
(−1)x·y(1 + (−1)y·s) |y⟩) (156)

Notice that 1 + (−1)y·s = 0 if y · s = 1.

• Sample many y to get linear equations y · s = 0. Solve s.
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12.2 Reduction of factorization to period finding

Factoring: N = pq, find p, q.

• Find a < N with (a, N) = 1.

• Construct function f (x) = ax (mod N). So f (x) = f (x + r) if and only if xr = 1
(mod N). We can thus find r.

Lemma 10. If N = pq, a < N chosen uniformly at random and (a, N) = 1, then with
probability ≥ 1/2, r is even and ar/2 ̸= ±1 (mod N).

• (ar/2 + 1)(ar/2 − 1) = 0 (mod N). Then gcd(N, ar/2 + 1) is a nontrivial factor of N.
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