
Notes on Adversarial Machine Learning  
1 Formalize Adversarial Attack  
Explorative Attacks vs. Causative Attack  

Explorative attacks: the attacker influences only the evaluation data.

The attempts to passively circumvent the learning mechanism to explore blind spots in 
the learner

... to craft intrusions so as to evade the classifier without direct influence over the 
classifier itself

Causative attacks: the attacker attempts to hack the training data as well.

In the following survey, an adversary is usually assumed to be explorative.

Adversary's Goal  

For an input , find a small perturbation  to force a classifier  to label . ((Szegedy et 
al. 2014)

Another definition is to minimize the loss function on label , with perturbation  subject to 
some restriction.

Targeted: Fool the classifier to a specific label 
Untargeted: Any  different from the origin class suffices.

Adversary's Strength  

An adversary may have access to some of the knowledges below:

Training dataset
The feature representation of a sample (a vector in the feature space)
Learning algorithm of the model (e.g. architecture of a neural network)
The whole trained model with parameters
Output of the learner

If an attack only requires input-output behavior of the model, it is referred to as a black box 
attack. (In some looser definition, the output of loss function is also accessible.) 

Otherwise, it is a white box attack.

 

2 Typical Attacks for Classification  
Box-constrained L-BFGS (Szegedy et al. 2014)  

The origin goal (1) of an adversary is generally too hard a problem for optimization. It is 
helpful to transform it into the following form:

We need to find the minimal parameter , such that . The optimum of 
problem (3) can be sought using L-BFGS. It is proved that two optimization problem (1) and 
(3) yield same results under convex losses.
Szegedy's paper also suggests an upper bound on unstability only by network architecture. 
This is done by inspecting the upper Lipschitz constant of each layer: if layer  is -Lipschitz, 
the whole network would be  Lipschitz:
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This bound is usually too loose to be meaningful, but according to Szegedy, it implies that 
regularization that penalizing each upper Lipschitz bound might help the robustness of the 
network.

FGSM (Goodfellow et al. 2015)  

A linear and one-shot perturbation:

In this paper, it is shown that:

Linear models are sufficient for the existence of adversarial attacks, since small 
perturbation results in a huge variation due to high dimensionality.
It is hypothesized that it is linearity instead of non-linearity that makes models 
vulnerable.

The computational efficiency of one-shot perturbation enables adversarial training.

Iterative Methods (Kurakin et al. 2017)  

Basic iterative method: this is essentially a PGD of  ball.

Least-likely-class iterative method:

where  is the least likely class of prediction.

Jacobian based Saliency Map Attack  

 norm attack (not read yet)

One Pixel Attack  

Applies differential evolution to generate adversarial examples
Black box attack: Requires only the predicted likelihood vector, but not the loss function or 
its gradient.

Carlini and Wagner Attacks  

Find objective functions , such that

which enables an alternative optimization formulation:

An efficient objective function  is found to be 

where the classifier is assumed to be:

The parameter  forces an adversary to find adversarial examples of higher confidence. 
It is shown that  is positively correlated to the transferability of the adversarial examples 
found.

Yet another trick is used for the box constraints. Let , so  satisfies 
 automatically.

 

 

3 Transferability  

Transferability: the ability of an adversarial example to remain effective on differently 
trained models.

A more careful definition (Papernot et al. 2016):

Intra-technique transferability: consider models trained with the same technique but 
different parameter
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initializations or datasets
cross-technique transferability: consider models trained with different techniques

Transferability empowers black-box attacks: to train a substitute model by querying the 
classifier as an oracle.

Several methods for data augmentation are proposed by Papernot et al. 

Universal Adversarial Perturbations (Moosavi-Dezfooli et al. 2017)  

A perturbation is universal if:

For each image x in the validation set, we compute the adversarial perturbation vector 
... To quantify the correlation between different regions of the decision boundary of the 

classifier, we define the matrix 

The author compares the singular values of matrix  with the singular values of a matrix 
with columns sampled randomly.
It is explained that a subspace of dimension  containing most normal vectors to the 
decision boundary in regions
surrounding natural images.

Myth:  

Why adversarial examples are so close to any input ?

Why adversarial examples looks like random noise?

Why training with mislabeling also yields models with great performance?

I listened to an online report made by Adi Shamir

Assumptions:

-manifold assumption
The boundary of a classification network is only pushed to get close to the manifold 
during training
Claim: adversarial examples are nearly orthogonal to the manifold.
Test using generative model!
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4 Defenses  
1. Adversarial Training  

Intuition: to argument the training data with perturbated examples. 

Solving the min-max problem

2. To Detect Adversarial Examples  

On Detecting Adversarial Perturbations (Metzen et al. 2017)

Intuition: to train a small subnetwork for distinguishing genuine data from data containing 
adversarial perturbation
Train a normal classifier  Generate adversarial examples  Train the detector 
Worst case: the adversary adapts to the detector:

where  allows the dynamic adversary to trade off these two objectives.
Apply the dynamic adversary and the detector alternately.

 

Detecting Adversarial Samples from Artifacts (Feinman et al. 2017)

A crucial drawback of Metzen's work: must be trained on generated adversarial examples

An intuition: high dimensional datasets are believed to lie on a low-dim manifold; and the 
adversarial perturbations must push samples off the data manifold.

Kernel Density estimation: Detect the points that are far away from the manifold.

where  is the set of training data with label  (here  means the predicted class). 
 is the kernel function and  maps input  to its feature vector of the last 

hidden layer.
Another intuition: deeper layers provide more linear and unwrapped manifold.

Bayesian Neural Network Uncertainty: identify low-confidence regions by capturing 
"variance" of predictions

Randomness is considered under dropouts and parameters are sampled for  times.

where  is a prediction of test input .

It is shown that typical adversarial examples do have much different distributions on 
uncertainty.

Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods (Carlini et al. 
2017)
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Analyze 10 proposed defenses to detect adversarial examples

Conclusion: all these defenses are inefficient when an adversary is aware the neural network 
is being secured with a given detection scheme; and some of the properties claimed for 
adversarial examples are only due to existing attack techniques.

The 10 defenses can be categorized:

1. Train a secondary neural network for detection
2. Capture statistical properties  
3. Perform input-normalization with randomization and blurring

Break each defenses by:

1. Secondary Detector:

Treat "malicious" as a new label. Combine the detector and the classifier:

where  are logits of the classifier and detector, respectively.

The detector marks "malicious"    
2.  

 

3. Certified Defenses  

Aim to "provide rigorous guarantees of robustness against norm-bounded attacks"

Certified Robustness to Adversarial Examples with Differential Privacy (Lecuyer et al. 2019)

Consider a classifier  that outputs soft labels , .

Suppose  is -DP, which implies , for any  such that 
.

Main theorem: If  is -DP, w.r.t.  norm, and , s.t.:

Then the classification model  is robust to attacks within the  unit 
ball.

This is different from traditional DP which uses  norm for , and the definition of 
sensitivity must also be changed:

The conclusion of DP can be applied to  norm as well, namely: Laplacian mechanism works 
for bounded  and Gaussian mechanism works for . Moreover, as DP is immune to 
post-processing, we can add these noises at layer of the network!

Overall Scheme: Pre-noise layers + noise layer  Post-noise layers

Only need to bound the sensitivity of pre-noise computation . This is done by 
transforming  to  with .

Techniques: Normalization, Projection SGD (Parseval  networks, tbd).
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5 Restricted Threat Model Attacks  

Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning 
Models

Story so far: gradient-based, score-based and transfer-based attacks

Definition (Decision-based attacks): Direct attacks that solely rely on the final decision 
of the model

Method: Initialize with an adversarial input  make random walk according to a 
"proposal distribution", trying to reduce . 

Performance: Requires (unsurprisingly) much more iterations of forward passes.

 

6 Generative Models  
6.1 Variational Autoencoder (VAE) Background  

latent representation , and decoder/generator maps  to . .
VAE aims to learn a latent representation for posterior distribution . Maximize loss 
function (minimize KL divergence):
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7 Verifiably Robust Models  
7.1 Interval Bound Propagation  

For input  and logits , we want worst case robustness in a neighbour of :

where .

Consider  with monotonic activation function ,  and 
 .

Let  and .

Left hand size of   is bounded by . To minimuze this term, define:

Then minimize hybrid training loss:

8 Physical World Attacks  

Synthesizing Robust Adversarial Examples

Expectation Over Transformation

To address the issue: adversarial examples does not keep adversarial under image 
transformations in the real world.
Minimize visual difference  instead of  in texture space

The distribution  of transformations:

2D: 
3D: texture , render it on an object to 

Optimize the objective:

 

Fooling Automated Surveillance Cameras Adversarial Patches to Attack Person Detection

Patch Adversarial Attack: only structurally editing certain local areas on an image

A pipeline of patch attack

Hybrid Objectives: 

 non-printability score

 the total variation loss. Force the image to be smooth.

 maximize the objectness . Note that we can also use  (class score) or 
both.
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Adversarial T-shirt! Evading Person Detectors in A Physical World

Thin Plate Spline (TPS) mapping  

To learn transformations  that maps each pixel  to . 

Suppose , .

According to TPS method, the only solution of  is given by:

where the radial basis function  and  are  sampled points on image .

TPS resorts to a  regression problem to determine , in which the regression objective is to 
minimize the difference between

This results in an equivalent problem:

where    and .

 (See Code for TPS for implementing details.)

Adversarial T-shirts generation  

The pipeline is similar as above. The major difference is the composited transformation 
adopted here.
The overall transformation is given by:

 yields the background region,  is the human-bounded 
region.

 is the bounding box of T-shirt.
 is applied in place of non-printability loss. 

 stands for conventional physical transformations,  for brightness of the whole 
environment.
Gaussian smoothing is applied by  to the adversarial patch.

 

Can 3D Adversarial Logos Cloak Humans?

Various postures and multi-view transformations threatens the adversarial property of 
previous 2D adversarial patches

Overall pipeline: Detach 3D logos from person mesh as submeshes , then:

Texture 
 maps a 3D logo to 2D domain ;  attach texture to 3D logo

Finally, render the 3D adv logo by differentiable renderer (e.g. Neural 3D Mesh Renderer) 
with human and background.

Loss

DIS: disappearance loss = the maximum confidence of all bounding boxes that contain the 
target object
TV: total variance:  captures 

discontinuity of 2D adv logo. (Here  stands for rendering.)

 

Adversarial Texture for Fooling Person Detectors in Physical World

Goal: to train an expandable texture that can cover any clothes in any size
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Four methods: RCA, TCA, EGA, TC-EGA

Code Notes

 

9 Object Detection  
9.1 YOLO  

 grids, each containing  anchor points with bounding boxes
Each anchor point: 

: object probability. The prob. of containing an object.
: Class score, learned by SoftMax and cross entropy

Confidence of object: measured by .
Confidence of class: measured by 
Yolo: Outputs [ batch , num_class  + 5 num_anchors  , ]
Yolov2: Outputs [ batch , ( num_class  + 5) num_anchors  , ]  (See details at below).

9.2 Region proposal network  

CNN generates anchors:

For each pixel on the feature map (say 256 dimension with size H ), generate  
anchors.
The height-weight ratio of these 9 anchors are 0.5, 1 or 2, each with three different size.
Each pixel has  scores and  coordinates. Each anchor yields a foreground and a 
background score. Use softmax to decide where it is foreground or background.

Meanwhile, use bounding box regression on each anchor. (Another branch)

Finally, Proposal Layer takes sum over anchors and BBox regression. 

Sort these anchors by foreground softmax scores. 
Delete anchors that surpass too much from boundary.
Use Non-maximum suppression to avoid multiple anchors on a single object. 
(Recursively choose the anchor with highest score and delete other anchors with high 
IOU against it.)

9.3 Bounding Box  

Original bounding box , learn deformation  to approximate the ground 
truth

where .  is the feature vector so we shall learn parameter 

9.4 ROI Alignment  

The proposed anchors have different size , pool the corresponding feature map (with 
size ) to a fixed size . In each of these  grids, do max pooling.
Finally, apply FC layers to calculate class probability and use bounding box regression again.

 

10 Basic Graphics  
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10.1 Coordinates  

World coordinates:  means left, up and in.

Azimuth: 经度⻆
Camera Projection Matrix  (intrinsic parameters of a camera)

From 3D world (metric space) to 2D image (pixel space)
Coordinate transformation from world coordinate  to camera coordinate :

10.2 Obj format  

vertex: 3D coordinate. In format: v x y z
vertex texture: 2D coordinate in texture figure. In format: vt x y
vertex normal: normal direction. In format: vn x y z
face. In format: f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3 . 
See examples here

10.3 Pytorch3d  

load an object

verts, faces, aux = load_obj(obj_dir)

OR mesh = load_objs_as_meshes([obj_dir], device)
Mesh: Representations of vertices and faces

  List | Padded | Packed
 |  has batch dimension  | no batch dimension, index into padded 

representatoin
e.g. vertex = mesh.verts_packed()

Mesh.textures:

Three possible representations:

TexturesAtlas (each face has a texture map)

(N,F,R,R,C): each face use  grid
TexturesUV: a UV map from vertices to texture image

TexturesVertex: a color for each vertex

10.4 Render  

Luminous Flux: . 

Radiance: . (⽴体⻆)

Conservation:

.

Diffuse light: 

where  is the orientation of the initial light and  is the normal orientation.
Specular light: 

where  is the reflective light and  is the direction of view.
Ambient light: .

#for uv:
mesh.textures.verts_uvs_padded()
#for TexturesVertex:
rgb_texture = torch.tensor([1,vertex.shape[0], 3]).uniform_(0,1)
mesh.textures = TexturesVertex(vertex_features = rgb_texture)

1
2
3
4
5
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  Accuracy FGSM ( ) CW ( )

75999.pth 0.817 0.6634 0.099

Shading

Gouraud: Color interpolation (barycentric interpolation)
Phong: Normal vector interpolation

11 Others  
11.1 Entropy, KL divergence  

Entropy .

Cross entropy .

The distance between two distributions  and  can be measured by:

which represents the information loss of describing  by .

Mutual Information: .

11.2 Statistics  

Accuracy = 

Precision = 

Recall = 

PR-curve: traverses all outoffs to get a tradeoff curve of precision and recall

12 Experiments  

FGSM, BIM, Carlini & Wagner attacks

Adversarial Training

FGSM adversarial training

Adversarial Texture:

TCA-1000epoch: AP = 0.6395
TCEGA-2000,1000: AP = 0.4472
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TCEGA-HSV-red-2000,1000: AP = 0.6951
TCEGA-Gaussian-2000,1000: AP = 0.4916

Pytorch3d Experiments  

Adv_3d  

Differentiable Rendering + original adv_patch pipeline
MaxProbExtractor: Only optimize the box with max iou!

Issues:

Parrallel

solved by modifying detection/transfer.py
may introduce problems of space redundancy
Config now: batch size = 2, num_views = 4, any bigger batch size causes cuda out of 
memory
10 minutes/batch

Project a [3,H,W] cloth to TextureAtlas

try TextureUV, but the projection from texture.jpg to TextureUV seems not 
differentiable

Add more constraints?

Ensemble learning

Experiment1: Batch: , lr = 0.001, attack faster-rcnn

af://n637
af://n638


The tendency of attacking two-stage detectors such as faster-rcnn: split boxes to smaller 
ones



 

MaxProbExtractor: Only to attack the box with max iou may sacrifice those boxes with 
smaller iou but much higher probability? (Failed, the current method works great enough)

now: iou threshold 0.4, prevent over-optimizing on trivial boxes.
try attacking the box with max confidence = iou  prob?

We now take the mean of gradient over  pictures. Why not try weighted mean (e.g. ) or 
other loss functions (e.g. ) to urge the trainer to attack the largest max_prob boxes?

Model placed in the middle of the picture (Overfit?) (Usually not a problem here)

 

8.28: I observe that over the parameters in the shape of [1,6906,8,8,3], only 3.49% of them 
(46333) deviate from original setup 0.5 (for grey). Over the trained parameters,  18.7% of 
them go beyond the [0,1] range.

8.31 I render the patch trained by 4 viewing points (0,90,180,270), it turns out that a small 
deviation from these angles would make the rendered picture almost completely grey:

It turns out that this is due to the Atlas expression of texture

8.31 I try 50% droppout on the adv patch (a random 0/1 mask of size 6000):

100%： recall = 0.10, 80%: recall = 0.32, 50%: recall = 0.89. (fail)
9.1 experiment4: random angles (163937) (fail)

parameters 87.59% trained
没有形成完整连续的图像，⼏乎没有对抗效果 (recall = 0.96)，但loss⼀直在0.3上下
I fixed the viewing angles for each epoch, so perhaps the tshirt is trained only 
adversarial for those views at end of each epoch. (fixed later in experiment 7)



9.4 experiment5: vec2atlas, R = 8. (Map  to atlas  before the previous 
pipeline).

recall = 0.20
9.3 experiment6: vec2atlas, R=2.

Reducing parameter  does not influence the quality of the rendered pics much, but 
save memory and time.



it seems that R=8 introduces too much parameters for a normal tshirt

Loss curve for random angle sampling

experiment7: R=2, random angle, switch every 20 iterations, vec2atlas

It turns out that random sampling takes about three times the epoches to converge as 
using fixed angles, but the figure below demonstrates the failure of the latter option on 
universal angles.



conf_thresh = 0.01, iou_thresh = 0.5

 

9.5 experiment 8： 尝试不均匀地sample⻆度，因为之前 random angles 均匀采样（as the red 
line shows）会导致⾯积较小的⾐服侧⾯对抗性较低

evaluate the model once every 5 epoches, divide the  angles into 36 intervals and 
estimate the loss  in each interval. 
Sample , where 

9.7 I test the performance of different . Since the final loss ranges from 0.1 to 0.25, I try 
 so that the ratio of sampling probability is about . 

 is too weak to be efficient; while  is too aggressive to converge.
 is balancing.

9.9 I regenerate an obj file for Tshirt using meshlab.

Details: Set up 4 cameras (at 0,90,180,270 degree) and auto-generate the maps from 
mesh to texture.



9.10 Map the  vector to the uv texture.

Details: Draw a monochrome triangle on the texture for each face according to 
The expressive power of uv texture is much stronger than . The reverse mapping 
thus requires more restriction.
Render from the texture again using the UV map. 

The uv-rendered tshirt is smoother in color but much less adversarial than the atlas-
rendered one.

It is necessary to create a precise mapping from UV to Atlas, which would enable the 
pipeline of training an adversarial uv texture.



An observation is that the lateral part of the uv-rendered tshirt gives lower recall, which 
is counterintuitive since the lateral part usually performs worse than other angles with 
less surface area. 

A possible (yet not necessarily true) explanation: the task of the lateral parts is harder 
so it is trained more robust to random deviations.

(9.12) Combining two meshes using uv texture causes conflicts: mesh of man cloaks the 
mesh of tshirt

This bug is due to incompatible texture size of two meshes. Fixed. (9.16)

Transfer uv texture back to  by interpolation (3% deviation from original  
representation). 

 

9.15 Enables the fast transfer from (3,V) to 2d texture in pipeline and calculate the 
corresponding TV loss of the 2d texture. loss = det_loss + a * tv_loss

Details: uv = vec[:,maps[:,:]]



 

Recall comparing tv loss

 

 
  

 

  
 

  Pipeline

Current Pipeline:

Next step: to enable the rendering process directly from TextureUV.

Replaces TextureAtlas and (3,V) with TextureUV
Facilitates direct modification on Tshirt cloth

9.16 Merge multiple pieces of texture maps into one.

Details: Regenerate an obj. for man with nonoverlapping texture map. 
Load the origin obj. file using atlas and transform it into (3,V) form.
Read the new obj. file by hand and draw each faces using PIL.draw.



 

Man texture

Pipeline

 

 

Pipeline:

 

Results:



 left: Texture 

right: Rendered figures

 



GAN pipeline for generating natural textures

 

Collect data of fashionable T-shirts (about 1300 tshirt clean images)
Use WGAN to generates TextureUV similar to normal T-shirts

,  sampled from .
May require training of .

 



left: WGAN, Loss = det loss + 0.04*LossG; right: Loss = det loss

 

 

                                                              

 



 

Problems: GAN 不稳定, 且 generator 学不到数据中的style

数据集style更集中  ---->  格⼦衫 
Reconstruction，then train latent vector for adversarial loss in a lower dimensional 
manifold
GAN 问题： 渲染出来的图⽚和真实拍的看起来不⼀致，而且必须有各个⻆度的真实图⽚

 

 

 

 

 



left: Randomly generated, dim = 128. HSV(H[180,200], S[0.2, 0.4], V[0.8,1.0])

right: Randomly generated, dim = 16. HSV(H[180,200], S[0.2, 0.4], V[0.8,1.0])

 

 



 

generating blue textures, detection loss

Translatation of color. x-axis stands for the center color.

 

Ideas from Design:

多个图层叠加, RGBA表⽰
⽤ Bezier 曲线参数化图案 (differentiable)

 

10.19 An interesting observation

I perturb the blue texture with colors in  by:

It turns out that the texture with translation remains adversarial.

Explanation 1: (h,s,v)   (r,g,b) . When   and  are fixed, r,b  never 
change and g  changes linearly.
Explanation 2: Adversarial examples for mask-rcnn rely more on silhouette (or the difference 
of colors) but less on colors.

 

RGBA blending: Add  on top of 

10.20 I try to add another layer of red on a already trained blue layer. （⼀层层叠加）



 

Descending order of gradient, with circles, AND

 

200 random geometries, XOR

the mask  is derived from descending order of .

 

Cannot converge.

mask 要求：⾊块⽐较连续、（最好）可优化

10.23 Train two layers at the same time?

Generate 0/1 mask randomly using PIL.ImageDraw



2 layers, Blue([200,220]) + Red([0,20])

 

Gray: add a new layer on a trained layer

Blue: train two layers at the same time

 

Output 3*num_layers   channels in the last deconvolution layer.
Apply texture = texture*(1-mask) + new_texture*mask



 

Gray: add a new layer on a trained layer

Blue: train two layers at the same time

Red: train two layers with random mask

 

 

10.24 Trained with random mask

Change the mask randomly during the trainig process. 

 

 

 

 

11.7 Goal: To design textures that are smooth/continuous/monochrome in several different 
patches

Previous idea: train a 0/1 mask and join two monochrome patches together
Problem: 0/1 mask is hard to optimize

 

Define purity loss to soften this constraint:

For mask , 

Moreover, to push the mask to approximate 0/1, learn logits of mask , so . 
(This also cancels the optimizing restriction of .)

Experiments:

Texture: .
Note: this forms quite a narrow space for optimization, since each pixel is now 
restricted to a line.

 



Yellow + Black, optimizing mask, β=1



Yellow + Black, optimizing mask, β = 2

Orange: β=1

Blue: β=2



Tests Average Recall

RGB, UV 0.191

Randomly Generated, dim=128. Green (H[100,120], S[0.5,0.8], V[0.3,0.6]) 0.465

Randomly Generated, dim=128. Blue (H[180,200], S[0.2, 0.4], V[0.8,1.0]) 0.475

Two layers, blue[200,220] + red[0,20], fixed mask 0.479

[0,1] Mask yellow + black, 0.458

[0,1] Mask yellow + black, 0.534

 

Triangle

 

 

 

11.22 How to optimize geometric shapes?

可微渲染：Probability map

Triangles  (paper)

希望 probability map 是关于三⻆形顶点的可微函数。

where  if  inside the triangle and  if outside.
 the shortest distance from  to the triangle.

so  is actually the signed distance function of the triangle.

Image from: here

 

Circles 

, where . 

 

XOR

 triangles and  circles with probability maps .
.

where  if  and  if  
Next step: 

https://vgl.ict.usc.edu/Publications/2020/IEEE_A%20GENERAL%20DIFFERENTIABLE%20MESH%20RENDERER%20FOR%20IMAGE-BASED%203D%20REASONING.pdf


Tests Average Recall

60 circles 0.661

100 circles 0.591

60 circles + 20 triangles 0.648

100 circles, . 0.567

100 circles, dynamic blur 0.512

 

100 circles

 

100 circles

Other geometries (Ellipse, arbitrary curve)
Dynamic number of geometries

 



Tests (conf_thres = 0.6) Average Recall (%)

100 circles, dynamic blur 51.2 --> 9.66

8 colors * 30 points, 18.8

8 colors * 50 points, 11.0

8 colors * 50 points, , 9.64

8 colors * 50 points, , 20.68

5 colors * 80 points, camouflage. . 11.91

 

 

11.22 ~ 12.6 

1. Criterion change

Confidence threshold: from 0 to 0.6

 

2. Restrict number of colors

XOR is good for 0/1 mask, but not flexible for controlling colors

Approximate Voronoi graph

Parameters:

 different colors,  control points for each color. 
Control points: .  Fixed colors 
仅优化控制点 ，优化形状 

For pixel :

 is the weight of color  at pixel .
 is the hyperparameter that controls the blur radius.



left: alpha = 1 right: alpha = 3

maximize likelihood + adv loss



8 colors x 50 points

 



5 colors, camouflage, 80 points

 



5 colors, grey, 80 points

 

3. Random Lights

Changes on light condition may hurt adversarial properties.



8 colors x 50 points, camouflage colors

pipeline of generating a camouflage texture

4. Mesh perturbation (Not implemented yet)

Randomly add perturbations to vertices of T-shirts mesh.

T-shirt Mesh: 

Vertices (3,N) .  .
.

Perturbation  must be continuous over .  stands for randomness.

Candidate functions:

$f(p, r) = \left(A_1\sin (\vec k_1 \cdot \vec p + r_1), A_2\sin (\vec k_2\cdot \vec p +r_2), 
A_3\sin (\vec k_3 \cdot \vec p + r_3)\right)$
$f(p,r) = A\vec n  \sin(\vec k \cdot\vec p + r)$. (Perturb along normal direction $\vec n$)

 

 

 

Generate camouflage texture:

Normal camouflage texture generator:

对于任意⼀个像素点，计算邻域 $k\times k$ 范围内每种颜⾊的数量

 

因为我们⽣成的 polygons 本⾝已经是⽤ probability map 表⽰的，只需要⽤⼀个 $k\times k$ 卷
积核进⾏柔化即可。

Use Gumbel-softmax to sample colors for each pixel.



left: polygon; middle: k = 9; right: k = 9, d = 2

Tests (conf_thres = 0.6) Average Recall (%)

Polygon (Camouflage colors) 11.91

Directly transfer from polygon 70.8

Gumbel-softmax trained 53.23

Gumbel-softmax with fixed seed 31.42

Gumbel-softmax with fixed seed, d = 2 18.78

log likelihood 20.67

Mesh perturbation scale = 0.05 28.39

Details:

1. Specify a fixed seed of Gumbel random variables. (Train one texture instead of a distribution 
of texture)

2. Lower resolution: 在 512 x 512 pixel space 上随机点太小， 如下图（中）。降低分辨率到 $1/d$ 
倍.

 

 

 



 

k = 9, d = 2

a pipeline of generating camouflage textures

 

 

 

Another method:

保持pipeline前半部分，⽣成⼀个具有迷彩⻛格的 probability map $P$
同时优化⼀个具有迷彩⾊彩的 probability map ，对  使⽤ Gumbel softmax 再⽣成 3 x H x W
的材质

minimize:  detection loss + $\Pr (B | P)$.
allow 2d textures to slightly deviate from permitted style $P$



another pipeline of generating camouflage textures

 

 

Random mesh deformation

For a given mesh  with vertices $x_i$, generate offset

This offset is smooth and continous
$M^\prime = M + \delta$.



Mesh perturbation

 

 

Code: Adversarial Texture  
1 training_texture.py (Main)  

adversarial cloth: [1(batch),3(RGB),width, height]
Random Crop Attack (RCA), Toroidal Crop Attack (TCA) differs only at random_crop

2 tps_grid_gen.py (TPS)  

Initialize: Using a $N\times 2$ array, denoting the  target control points. Then construct the 
TPS kernel matrix as shown above. target_control_points : $\hat p_i^{(x)}, i =[1,\dots, 25]$.

source_control_point  is sampled with small disturb from target_control_points , which 
stands for $\hat p_i^{(z)}$.

source_coordinate = self.forward(source_control_points) . 

forward function calculates 

Then calculate source_coordinate  by equation $\ref{delta}$. 

af://n1222
af://n1223
af://n1229


Finally, use F.grid_sample  to map the adversarial patch to source_coordinate .

 

3 load_data.py  

3.1 MaxProbExtractor  

Extracts max class probability from YOLO output.

YOLOv2 output: [ batch , ( num_class  + 5) num_anchors  , ]

num_class  + 5 = 85. 

0~3: x,y,w,h
4: confidence of this anchor (objectness)
5~84: class probability $\Pr[class_i|obj]$ of this anchor
for func = lambda obj,cls:obj , we only minimize the maximum objectness 
confidence.

4 random_crop  

 Crop type:

None: used for RCA, TCA crop

5 Patch transformer  

randomly adjusting brightness and contrast, adding random amount of noise, and rotating 
randomly
adv_batch = adv_batch * contrast + brightness + noise

The training label: (N, num_objects, 5). 
Output: (N, num_objects, 3, fig_h, fig_w)

 

 

Paper List  

Most parts of this paper list is borrowed from Nicholas Carlini's Reading List.

Preliminary Papers  

Evasion Attacks against Machine Learning at Test Time
Intriguing properties of neural networks
Explaining and Harnessing Adversarial Examples

Attacks [requires Preliminary Papers]  

The Limitations of Deep Learning in Adversarial Settings
DeepFool: a simple and accurate method to fool deep neural networks
Towards Evaluating the Robustness of Neural Networks

mapping_matrix = torch.matmul(Variable(self.inverse_kernel), Y) 
source_coordinate = torch.matmul(Variable(self.target_coordinate_repr), 
mapping_matrix)

1
2
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af://n1287
https://arxiv.org/abs/1511.07528
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1608.04644


Transferability [requires Preliminary Papers]  

Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial 
Samples
Delving into Transferable Adversarial Examples and Black-box Attacks
Universal adversarial perturbations

Detecting Adversarial Examples [requires Attacks, Transferability]  

On Detecting Adversarial Perturbations
Detecting Adversarial Samples from Artifacts
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods

Restricted Threat Model Attacks [requires Attacks]  

ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without 
Training Substitute Models
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Prior Convictions: Black-Box Adversarial Attacks with Bandits and Priors

Verification [requires Introduction]  

Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models

Defenses (2) [requires Detecting]  

Towards Deep Learning Models Resistant to Adversarial Attacks
Certified Robustness to Adversarial Examples with Differential Privacy

Attacks (2) [requires Defenses (2)]  

Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial 
Examples
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks

Defenses (3) [requires Attacks (2)]  

Towards the first adversarially robust neural network model on MNIST
On Evaluating Adversarial Robustness

Other Domains [requires Attacks]  

Adversarial Attacks on Neural Network Policies
Audio Adversarial Examples: Targeted Attacks on Speech-to-Text
Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples
Adversarial examples for generative models

Detection  

Rich feature hierarchies for accurate object detection and semantic segmentation
You Only Look Once: Unified, Real-Time Object Detection
YOLO9000: Better, Faster, Stronger
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Physical-World Attacks  

Adversarial examples in the physical world
Synthesizing Robust Adversarial Examples
Robust Physical-World Attacks on Deep Learning Models
Adversarial T-shirt! Evading Person Detectors in A Physical World
Universal Physical Camouflage Attacks on Object Detectors
Fooling Automated Surveillance Cameras Adversarial Patches to Attack Person Detection
Can 3D Adversarial Logos Cloak Humans?
Adversarial Texture for Fooling Person Detectors in Physical World

 

Ideas  

Difference from 3D logo? (What's our goal?)
Restricted deformation or recoloring from any input cloth?
Differential deformation of logo (by B-spline?)
monochromatic, analogous, or complementary colors

我们现在是优先attackiou最⼤的框，然后小于⼀定iou threshold的就不训练了，防⽌过度训练到⼀些
trivial的boxes

牺牲了⼀些iou⽐较小但是prob⽐较⼤的框，能不能把周围有⼈的情况下，把周围的⼈也隐藏起来

object confidence=iou和prob 效果不好

 

B个⻆度的取梯度的平均值，weighted mean去加速优先attack 

 

2D的pipeline 饱和度 hsv

⾊相饱和度亮度

 

参数化 gan
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