
Reading Notes on defenses  
 

1 TSS: Transformation-Specific Smoothing for Robustness Certification  

Semantic Transformation Attacks (e.g. Rotate, Contrast, Brightness, etc.)

Often not constrainted by norm metrics
Forms a very low dimension space (comparing with the image space)
Preserve semantic information
Some may introduce interpolation error

 

1.1 Formalizing transformation:  

Consider the image set  and label set . 
Let  be the space of transformation parameters.
Define a transformation as a mapping .

 

For an arbitrary classifier , we denote its -smoothed classifier as:

1.2 The theorm of robustness for general transformation  

Let  and  be random variables in , with pdf .

Let  where  is a smoothed classifier of .

Suppose there is a probability gap between the top-2 classes. Specifically, we have

For ,  and . Define the function  by:

where .

Then, if , .

 

Note: Here is a possible intuitive explanation of this theorem.

Why  represents the lower bound of ? Consider the problem of 
minimizing

This is actually a continuous version of the knapsack problem, so a greedy algorithm is 
optimal!

We only need to greedily fill  in the ascending order of . To describe it 
formally,
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Therefore, .

 

1.3 Taxonomy of Semantic Attacks  

Resolvable: if , there exists a resolving function  that is injective, 
continuously differentiable with non-vanishing Jacobian, and that

This equation defines the composition rule of resolvable transformations, so that an 
attack  would be smoothed by a  smoother to . The general 
theorem of robustness is thus applicable.

Differentially Resolvable: if , there exists a resolvable transformation 
 and a function , such that

For transformations that are not resolvable (e.g. rotation, which suffers from 
interpolation error), differentially resolvable is a more general definition for them.
It is called differentially resolvable since the difference between  and  is 
resolvable.
Consider . Any  with continuous pixel value changes can be resolved by 

.

 

1.4 Theorems of Differentially Resolvable Transformations  

Suppose  is resolved by . Let  be an -smoothed (in the 
space of ) classifier.

Consider  and define  as a set of sampled parameters. Suppose we have 
found the probability gap that:

Then there exists a set , such that if  with , then

Note:

 is actually the certified space of robustness in , which can be derived by procedures of 
certifying a resolvable transformation. As stated in Corollary 2, when  and  
is a Gaussian random variable,  it is able to certify a ball area centered at the origin: 
.  The intersection  then naturally satisties the restriction.
Again consider the case in Corollary 2,  is a ball . Then the procedure of sampling 

 can be viewed as certifying many small balls in . Any  can be certified as long 
as  is mapped closer enough to a .
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1.5 Examples  

Gaussian Blur: take convolution with Gaussian function.  . It is not only 
resolvable, but additive as well.
Brightness + Contrast.  where .

 

2 Robustness Certification for Point Cloud Models  

2.1 About Point Clouds  

Expression of 3D data: 2D projections, 3D voxels (a 3D 0/1 map), meshes, point clouds...

Point cloud: a sparse representation.

Need to be invariant to permutations in the orders of points.
Note: It seems that in the point cloud scenario, transformations like rotation and scaling are 
resolvable since they do not introduce errors of bilinear interpolation? 

2.2 Key idea  

1. Use first-order taylor approximation to bound any differentiable transformation function
2. A precise relaxation for global feature poolings, which are more complex than pointwise 

activation layers such as ReLU.  

2.3 Taylor Approximation  

For a point cloud  and any  transformation 
, by Taylor expansion at :

for some  on the path from  to . It is thus only required to bound the second order error 
.

2.4 Max Pool Relaxation  

Max pooling: . Suppose .
One can find a trivial lower bound  and a trivial upper bound . 
However, this upper bound causes too much precision loss so a preciser upper bound is 
required.
This paper presents an idea of computing the convex hull of all possible cases of . That 
is, to compute the convex hull of , where 

2.5 Specific Transformation  

Rotation: . A possible representation: rotate around  for an angle of .

Rotations are additive when the rotation axis is fixed (and also without interpolation), 
but not addtive when the axis is arbitrary. Still, it is resolvable when no interpolation is 
needed. 

Shear: .

Twist, Taper: These are special geometry transformations that occur only in 3D space.

These transformations are resolvable only when the main axis is fixed. With random 
axes, they are not resolvable.
To directly apply Corollary 2 of TSS for differentially resolvable transformations, it seems 
we need to sample parameters  from , which may be prohibitively large.
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3 End-to-end Robustness for Sensing-Reasoning Machine Learning
Pipelines

 

3.1 Summary  

 Many previous methods have been proposed to certify the robustness of machine learning 
models the pertubation bounded in a small  ball. In this paper, a generic Sensing-Reasoning 
machine learning pipelines was proposed, in which the previous methods were viewed as a 
certification of sensing robustness. The output of sensing (deep learning) models were combined 
with embedded domain knowledge in reasoning components to provide end-to-end robustness. 
This pipeline is a generic framework since the choices of specific certified robust sensing models 
are orthogonal to the certification of reasoning robustness. 

 The analyses of reasoning robustness started with showing the hardness of certifying the 
robustness of a general reasoning model. By proving the polynomial time reduction of the 
counting problem to the robustness problem, certifying the robustness of a general reasoning 
component was proved to be #P-hard. Despite the hardness of this problem, the author argued 
the possibility of approximating reasoning robustness for specific graph structures.

 Robustness bounds were shown to be certifiable for several reasoning structures including 
Markov logic networks and Bayesian networks.

 

3.2 MLN  

To compute the marginal distribution of a given variable , we need to compute two partition 
functions. .
To find a proper bound for the maximization problem for  could be 
solved by maximizing and minimizing . The constraint 

of  was eliminated by adding Lagrangian multipliers .

 

3.3 Bayesian Network  

Consider a Bayesian Network with binary tree structure and calculate .

 

Problem: Why ?

According to the binary tree Bayesian network, we should have joint distribution:

However, the marginal distribution above seems to have assumed independence among 
. Moreover, following the factorization of a binary tree Bayesian network, when 

given ,  is independent with .  Thus, with fixed , it seems that the 
marginal probability  should be independent of  ?
In short: Why should not all random variables of sensing output be leaf nodes?
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